
Page 1 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

Little Rock Child Maltreatment:
Predictive Analysis
This report presents results for the Predict Align Prevent analysis predicting
geospatial child maltreatment risk in Little Rock, Arkansas. The work presented here
is based on the PAP research protocol.

UA Research Team: Drawve, Grant, Shaun Thomas, and Jyotishka Datta

July 6, 2020

• 1 Predict Phase
o 1.1 Motivation
o 1.2 Exploratory Analysis

▪ 1.2.1 Analysis of maltreatment events over time and space
▪ 1.2.2 Testing maltreatment events for clusters

o 1.3 Feature Engineering
▪ 1.3.1 Pairwise correlations

o 1.4 Model Fitting
▪ 1.4.1 Model fitting & stacking
▪ 1.4.2 Model validation
▪ 1.4.3 Accuracy and generalization tradeoff

o 1.5 Results
▪ 1.5.1 Average goodness of fit results
▪ 1.5.2 Predicted Values and MAE maps
▪ 1.5.3 Generalizability
▪ 1.5.4 Random Forest: Feature importance
▪ 1.5.5 Poisson GLM: Coefficients

o 1.6 ACS Variables: Stat Area Category Plot
▪ 1.6.1 Census-tract typology comparison

▪ 1.6.1.1 Model Errors by Poverty and Non-white percentage
o 1.7 Comparing meta-model predictions to Kernel Density

• 2 Align
o 2.1 Risk category population totals
o 2.2 Is poverty related to predicted maltreatment events?
o 2.3 Maltreatment risk and child fatalities
o 2.4 Assign risk scores to protective land uses (DCFS facilities)
o 2.5 Assign risk scores to protective land uses (childcare and resource centers)

Page 2 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

▪ 2.5.1 Child Care Centers
▪ 2.5.2 Neighborhood Resource Centers
▪ 2.5.3 Child Youth Centers
▪ 2.5.4 Civil Social Organizations

o 2.6 Supplementary Material
▪ 2.6.1 Correlation

▪ 2.6.1.1 Positively correlated variables
▪ 2.6.1.2 Negatively correlated variables

▪ 2.6.2 Choosing a fishnet grid size
▪ 2.6.3 Goodness-of-fit Tests
▪ 2.6.4 Tract fixed effects

o 2.7 Appendix : R Codes
▪ 2.7.1 LR Tracts
▪ 2.7.2 Basemap
▪ 2.7.3 Count CPS incidents per net cell
▪ 2.7.4 Population and Other Census Data
▪ 2.7.5 Summarize population
▪ 2.7.6 CM Count by fishnet
▪ 2.7.7 CPS counts by month and year
▪ 2.7.8 CPS histogram by date
▪ 2.7.9 CPS points by month plot
▪ 2.7.10 CPS KDE by Year plot
▪ 2.7.11 CPS trend by month and year
▪ 2.7.12 CPS Line Agg by Month
▪ 2.7.13 CPS Calendar plot
▪ 2.7.14 CPS compare fishnet grid size
▪ 2.7.15 AIC calculation for Poisson and Negative Binomial
▪ 2.7.16 Protective and Risk Variables
▪ 2.7.17 Aggregate features
▪ 2.7.18 Aggregating all features, creating correlation plots and fitting three different

models

Page 3 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

1 Predict Phase

1.1 Motivation
This report outlines a statistical prediction/inference framework and modeling structure for spatially
referenced child maltreatment events in Little Rock between 2015 and 2018. The underlying premise is
to aggregate multiple spatial events to a common underlying geography by looking at the counts of
events in pre-defined raster cells, and build a statistical or machine learning framework, that accounts
for both social and environmental (physical - built) factors as well as the spatial clustering of both the
response events and other factors and resources.

To visualize the extent of spatial clustering, Figure 1.1 displays the count of maltreatment events
between July 2015 and June 2018 by census tracts. This figure demonstrates that the spatial distribution
of child maltreatment is far from uniformly distributed across tracts. Thus, a critical question is
allocation of limited child welfare resources to the communities that are most severely affected.

To identify locations that will need the most resources we must first determine where child
maltreatment events are clustered. While individual, family, and household level factors affect child
maltreatment, extant research suggests that community and social factors play an important role in
understanding where maltreatment may occur (Daley et al. 2016, Durlauf, 2004).

The maltreatment event clusters are visualized in Figure 1.1b, which maps the rate of child
maltreatment events in Little Rock, AR between 2015 and 2018. Recent work indicates that variation in
these spatial clusters can be predicted by environmental factors such as crime, blight, and bars and
restaurants.

Figure 1.1 Distribution of child maltreatment events in Little Rock, AR.

1.2 Exploratory Analysis
In this section, we derive several descriptive insights from our data. To begin, maltreatment events
across space and time are visualized and we discuss possible selection bias in the data. Next, hypotheses
related to the clustering of maltreatment events across space are presented. Finally, we calculate a
series of pairwise correlations between maltreatment and our selected features (I.e. features we expect
to influence where child maltreatment occurs).

Page 4 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

Figure 1.2a Temporal variation by year, month and weekdays.

1.2.1 Analysis of maltreatment events over time and space

Figure 1.2 below plots the counts of child maltreatment events throughout the study period, which
began midway into 2015 and ended midway through 2018. As we do not observe these reporting
changes, time variation cannot be used for model validation.

Figure 1.2b Yearly variation of child maltreatment events in Little Rock.

Page 5 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

Figure 1.2c Weekly distribution of child maltreatment incidents.

1.2.2 Testing maltreatment events for clusters

One overarching assumption underlying our model is that maltreatment events are clustered in space.
To test this hypothesis, the Local Moran’s I statistic is employed.

The Local Moran’s I statistic examines whether the local distribution in the rate of maltreatment events,
defined by a spatial weights matrix, is more clustered than we would expect due to random chance
alone (Bivand et al. 2008, Pebesma & Bivand, 2019). The next figure plots the Local Moran’s I results,
with the identification of the k nearest neighbors then assigning their respective weights were done
using the package spdep (Bivand & Wong, 2018). The first panel displays the count of maltreatment
events; Panel 2 shows the Local Moran’s I value; and Panel 3 identifies areas that exhibit statistically
significant clustering. Panel 3 suggest areas that resemble discrete clusters of maltreatment in space.

Page 6 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

Figure 1.3 Spatial Autocorrelation via Moran's I

1.3 Feature Engineering

1.3.1 Pairwise correlations

In this section we seek to understand the extent of the linear relationship between the available
features. Towards this end, we first create several features from the available data (i.e. built
environment factors and census data). The two figures below visualize pairwise correlations for the most
correlative risk and protective factors, respectively. Note the correlation coefficients associated with the
maltreatment count (cps_net) and the maltreatment rate (cps_rate). The colors of the plot vary

with the strength of the correlations, either positive or negative.

Page 7 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

There are 3 different prefixes associated which each type of feature. NN refers to features calculated by

taking the average distance between a fishnet grid cell and its k nearest risk/protective factor neighbor.
ed refers to the Euclidean distance between a fishnet grid cell and its 1 nearest risk/protective factor
neighbor. agg refers to the count of risk/protective factor events in each fishnet grid cell.

Page 8 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

Figure 1.4 Correlation between risk factors

Page 9 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

Figure 1.5 Correlation between protective factors

1.4 Model Fitting

1.4.1 Model fitting & stacking

Model ‘fitting’ describes the process by which a statistical algorithm learns about maltreatment risk by
relating the interaction of risk and protective factors to maltreatment events across space. Once a
model is fitted and validated, the learned pattern is applied back to the contributing features in each
fishnet cell in order to predict the count of maltreatment events across space. This prediction highlights
areas where maltreatment is present but unreported. This is similar to the risk terrain analysis methods
(Caplan et al. (2011, 2015), Drawve, 2016) where a separate map layers, created for each predictor, are
combined to produce a composite map where each factor can be evaluated in a model-based way. The
first step in the model building process is to select the top few most statistically important risk and
protective feature sets. We select across the different feature types (Euclidean distance, average
nearest neighbor distance, and aggregate counts) based upon statistical correlation. These features
comprise the final feature sets, which are then subjected to our models.

Three different algorithms are fit modeling different aspects of the spatial process and then combined
into a fourth ‘meta-model’. The three individual models are a Poisson Generalized Linear Model (Poisson
GLM), a Random Forest model, and a Spatial Durbin Model (SDM). The final prediction of maltreatment
events is produced from the meta-model which is created by applying the Random Forest algorithm to
the predictions made by the sub-models. The use of three distinct model algorithms is an effort to
understand different aspects of the highly complex system that contributes to the observation of a
maltreatment event.

At each stage in this process, models are fit using a ‘k-fold cross validation’ routine (kFCV). kFCV splits
the data into spatially explicit groups, in this case tracts, fits the models to all but (1/k)-th of the groups,

Page 10 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

Figure 1.6 Spatial cross-validation scheme – the entire

geography is divided into k different folds, where the model is

trained on (k-1) folds and tested on the remaining k-th fold. In

this figure, colors represent folds, i.e. like-colored tracts

belong to the same cross-validatory fold.

and predicts maltreatment event counts for the left-out folds of groups. This process, explained in
greater detail below, tests how well the models generalize across neighborhoods. Below we explain the
three sub-models and their inclusion in the final meta-model as well.

Poisson GLM

The Poisson GLM model, fit with the base R glm function, is an adaptation of linear regression that

accounts for the characteristics of count data.
The adaptations include modeling the residuals
as Poisson distributed and transforming the
linear model with a natural log function
(Montgomery et al., 2006). As a result, the
predictions from a Poisson model are positive
and represent mean expected counts
conditional on the contributing risk or
protective features for each fishnet grid cell. In
the meta-model, Poisson GLM predictions
represent a linear model of a Poisson

distributed count process.

Remark: The Poisson GLM model is not an
optimal choice as we have a moderately high-
dimensional feature space. As such, it runs into
problems of rank-deficiency and
multicollinearity. Put another way, rank deficiency happens when the design matrix has less than full
rank, leading to lack of unique solutions for the GLM, and multicollinearity implies columns of X matrix
exhibiting high-degree of correlation, leading to inflated variance of the parameter estimates and
instability. One fix is using a penalized regression that puts a budget on the parameter vector in the GLM
framework, such as LASSO or Elastic Net, which reduces these issues to some extent.

Random Forest

In this study, the Random Forest algorithm is fit using the ranger library. The Random Forest algorithm
builds a series of decision tree models to learn the relationship between maltreatment and exposure
variables (Breiman, 2001). The stochastic approach to sampling from observed data ensures that each
individual tree is different from the next. The Random Forest provides a ‘wisdom of many’ approach,
contributing non-linear interactions between maltreatment and the corresponding features to the final
meta-model.

Spatial Durbin Model

To model spatial interrelationships - also referred to as ‘spatial autocorrelation’ - a Spatial Durbin Model
(SDM) is fit using the errorsarlm function of the spdep package in R. In the setting of this study, the
interpretation of this model is that the rate of maltreatment events is affected by both the exogenous
exposure factors as well as neighboring rates of maltreatment. Further, this model assumes that there
may be latent features that impact the model errors but are not accounted by the exposure features
(Elhorst, 2014). The key model input of spatial autocorrelation is a spatial weights matrix relating
maltreatment in a given grid cell to its neighbors. Modeling the underlying spatial maltreatment process
provides a powerful predictive story when input into the final meta-model. It is important to note that

Page 11 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

the SDM is not fit with the 10FCV method due to the complications of subsetting a spatial weights
matrix in a cross-validation setting.

Meta-Model

The final maltreatment count predictions are generated from a meta-model which combines predictions
from the three sub-models. The process to combine the three models is straightforward as the
predicted counts from each sub-model are used as input features of a new model fit with the Random
Forest algorithm. Often referred to as model ‘stacking’, this technique seeks to average out the variance
in the three separate models (Wolpert, 1992, Breiman, 1996). To reduce the risk of over-fitting, the
stacked meta-model is fit and predicted using the same 10-fold cross-validation routine as the sub-
models.

1.4.2 Model validation

Assessing the accuracy and spatial generalizability of model predictions is crucial when considering how
to embed this model in the provision of child welfare services. A variety of approaches are used for
model validation including k-fold cross validation (kFCV) and assorted goodness of fit metrics. Some of
these metrics are statistical in nature, while others measure goodness of fit across space.

Goodness of fit metrics

Model error is defined simply as the difference between the observed count of maltreatment events
and the predicted count for each grid cell. Complicating matters is that 297 models yield more than
567,000 grid cell level predictions. We derive several statistics to summarize and aggregate these errors
in order to judge models and compare across them. We describe each below:

The Mean Absolute Error or MAE measures the average absolute difference between the observed and
predicted values. An example interpretation of MAE is that, ‘on average, the model is off by plus or
minus 1.67 events.’ MAE is simple to interpret in a policy context, however, it comes with some
drawbacks, namely that the direction of the error is unknown and that every error is assumed to have
the same severity. The MAE assumes that an error between a predicted count of 5 and an observed
count of 7 events should be considered the same as a prediction of 23 and an observed value of 25
events. This metric is used here due to its obvious interpretation and common usage in the assessment
of predictive models.

The second goodness of fit metric used in this study is called the Logarithmic Score. This metric is not as
straightforward as the MAE, but it has qualities that make it well-suited to count-based predictions. The
intuition of the Logarithmic Score is as follows: What is the likelihood of the observed count given the
predicted count. More descriptively stated: if the model predicts 10 events and the observed count is 7
events, then what is the probability of observing those 7 events if the prediction of 10 is indeed the
correct number. In this way, the Logarithmic Score measures the deviance between the predicted and
observed counts. Specifically, this is measured by calculating the probability density of the observed
value from a Poisson distribution centered on the predicted value. The goodness of fit measures below
reports the negative log of the probability density so that the value should always be minimized. In the
results portion of this report, the Logarithmic Score is converted back to a probability and aggregated.
The result is a score that is interpreted as the ‘average likelihood that the observed counts are true
given the predicted maltreatment counts. Closer to one means a higher relative likelihood, 0.5 equates
to maximum uncertainty, and a value near zero signifies very little likelihood.

Page 12 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

1.4.3 Accuracy and generalization tradeoff

The purpose of the 10FCV and the goodness of fit metrics is to assess model errors on average and
across space. A model that perfectly predicts the observed event counts for each fishnet grid cell would
be very accurate but would not generalize well to other cells because exposure changes across the city.
Conversely, a model that predicts the same count of maltreatment events for every cell would
generalize well, but not be relevant to the conditions of any one cell. 10FCV and associated metrics help
establish a balance between model accuracy and model generalization. Given the purpose of this study,
it is important to create a model that is accurate enough to give confidence, but general enough to be
applicable in areas where few cases are documented.

1.5 Results

1.5.1 Average goodness of fit results

The table below displays the goodness of fit metrics for each of the sub-models and the meta-model.
Mean and standard deviation of different metrics are calculated. Means are taken to describe relative
goodness of fit across each held out neighborhood. Standard deviations are taken to describe the
variation in goodness of fit across each held out neighborhood. If the model generalizes well across
neighborhoods, then the standard deviation should be relatively low.

Table 1. Comaprison between candidate method in terms of accuracy and model fit diagnostics.

Model
Name

R2_mean R2_sd MAE_mean MAE_sd RMSE_mean RMSE_sd logdev_mean logdev_sd

GLM -
Poisson

0.331 0.114 1.166 0.416 6.452 8.966 0.583 0.066

Meta-
Model

0.438 0.131 0.930 0.229 2.251 0.570 0.620 0.071

Random
Forest

0.391 0.107 1.072 0.221 2.362 0.576 0.540 0.065

Spatial
Durbin -
sqrt

0.434 NaN 0.803 NaN 2.348 NaN 0.693 NaN

R2 or R Squared is a traditional measure of goodness of fit. Although typically not used to evaluate count
outcomes, we include it here because it will be familiar to many readers.

MAE or Mean Absolute Error is the absolute difference between the observed maltreatment counts and
predicted counts. The meta-model MAE equates to 0.979 on average. The relatively high standard
deviation of MAE suggests that greater errors can be found certain places, namely those with very high
maltreatment counts.

Page 13 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

RMSE or Root Mean Squared Error is the standard deviation of the prediction error. Like MAE, RMSE is
reported on the scale of the dependent variable, but it varies in that the metric is weighted heavily by
errors of high magnitude.

For the Logarithmic Score (logdev) the mean for metal model is 0.62 with a standard deviation of 0.071.
This equates to a 95% confidence interval between 0.558 and 0.682 for the population average. The
intuition of this result is that on average, the probability that the model estimates are correct given the
documented maltreatment counts is between 0.558 and 0.682. While the population average of errors
from independent LOGOCV estimates is helpful for assessing how the model generalized, it is equally
important to know how these errors are distributed both statistically and across space.

Of note in the above table is the reduction in not only MAE and logdev but perhaps more importantly is
a reduction in the standard deviation in those metrics across all 51 tracts. The meta-model results in an
average MAE of 0.93 with a standard deviation of 0.229. The 95% confidence interval for the meta-
model MAE across the entire population of neighborhoods is between 0.729 and 1.13. Since MAE is on
the scale of absolute count of maltreatment events, this means that the population average MAE is less
than one incident.

Figure 1.7 visualizes predicted vs. observed
maltreatment event counts for the meta-
model. The black line represents a perfect fit
while the blue line represents the predicted fit.
This plot provides visual evidence of an
accurate model. Nevertheless, the plot also
indicates that the model errors are much
higher for the highest observed counts. In
other words, the model fits most of the data
well but breaks down in grid cells with far
greater counts. As we discuss below, this has
some ramifications with respect to
generalizability.

 Figure 1.7 Predicted versus Observed Maltreatment counts.

The next figure plots the log-deviance and MAE by the deciles for a visual comparison between the
implemented methods.

Figure 1.8 Log-deviance for different models

Page 14 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

Figure 1.9 MAE for different models.

1.5.2 Predicted Values and MAE maps

Figure 1.10 shows the predicted values for child maltreatment events as well as the mean absolute
errors (MAE) overlaid on the map of Little Rock. Although the maps look fairly similar to each other at
first glance, a close inspection reveals that there are differences in how tightly clustered or ‘patchy’ the
prediction maps are as well as the relative quantification of uncertainty.

For example, the predicted counts for the highest bin in Poisson is very different from both random
forest and spatial durbin model, which could be due to Poisson models inability to account for
overdispersion in presence of clusters (also see Table 1).

As explained before, the meta-model is created by stacking the other candidates in a supervised set-up,
the predicted counts as well as the error metrics for the meta-model fall somewhere in the range of the
same for all of the other candidate methods. A key use of these maps is not just to provide a predictive
hotspot-type visualization but also give a sense of the uncertainty attached and, by comparison with
other environmental and social factors, allocate the available resources in a data-driven way. We
address the issue of association of predicted maltreatment counts with ACS variables in the next section.

1.5.3 Generalizability

Further complementing these findings, Figure 1.11 shows the goodness of fit metrics broadened to the
tract level for the meta-model estimates. The goodness of fit indicator was calculated by way of
LOGOCV. The MAE and Logarithmic Score metrics follow a similar pattern with higher errors in tracts
with higher rates of maltreatment events.

If the model were perfectly generalizable, model errors by tract would be randomly distributed. The
map in Figure 1.11 demonstrates that MAE clusters slightly, see the yellow patches in Figure 1.11b.

Page 15 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

Figure 1.10 Map of Little Rock with Predicted maltreatment counts as well as MAE for dour different methods compared.

Page 16 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

Figure 1.11 Out-of-fold error by tracts: logarithmic deviance and MAE.

1.5.4 Random Forest: Feature importance

Next, we attempt to look “under the hood” of the model. We do this first by visualizing feature
importance. The below plot visualizes ‘feature importance’ for the Random Forest sub-model, showing
which features make the greatest contribution in predicting maltreatment. We caution the reader that
the feature importance for a random forest is not a formal probabilistic quantity, like the p-value or the
posterior probability of a predictor being important.

Figure 1.12 Feature importance for the random forest model.

Page 17 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

1.5.5 Poisson GLM: Coefficients

For a Poisson GLM, the exponents of coefficients are equal to the incidence rate ratio (relative risk).

Figure 1.13 Poisson GLM coefficients

Page 18 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

1.6 ACS Variables: Stat Area Category Plot
We look at poverty (population struggling) and non-whites rates by census tracts, classified by
percentiles, and plot the spatial distribution (here ‘0’ is less and ‘1’ is more).

Figure 1.14 Poverty and non-white percentiles by tracts.

1.6.1 Census-tract typology comparison

1.6.1.1 Model Errors by Poverty and Non-white percentage

Next, we aggregate mean errors to statistical areas (med_dev, and med_MAE), aggregate sum of Child
maltreatment incidents (med_CPS) to statarea, and (a) group by poverty (pop-struggle) and get median
of stat-area aggregate errors, and (b) group by nonwhite and get median of statarea aggregate errors.

Income and race are inextricably linked to many of the census and exposure features used in the model,
but no variables directly measuring race or income are included in the models. While feature
importance provides some glimpses into how the model predicts, the best way to understand the inner
workings of a model is to look for patterns in how it predicts. Our approach for doing so, tests how well
the model generalizes across both wealthy and poor areal units as well as predominately white and
predominately minority areal units.

Two census attributes are selected for these purposes including percent living below poverty and
percent non-white.

nonWhite.percentile Median log-dev Median MAE Median child
maltreatment counts

0 0.507 1.091 1,465

1 0.398 1.710 2,361

Next, median meta-model predictions are calculated for each NSA and goodness of fit is compared
between high and low areas. Table below lists the median Logarithmic Score for both the high and low
classes for each of the census variables. If the model generalizes well to both tract typologies, the

Page 19 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

Logarithmic Score should be comparable across high and low categories. We find a small but non-
negligible difference between the log-scores between race-related categories across the city but slightly
less so for poverty-categories.

1.7 Comparing meta-model predictions to Kernel
Density
Perhaps the strongest method for assessing the usefulness of a predictive model is to compare its
predictive power to that of the current resource allocation strategy. Here we compare our model to
another common spatial targeting algorithm - Kernel Density Estimation (KDE).

KDE is a simple spatial interpolation technique that calculates ‘predicted risk’ by taking a weighted local
density of maltreatment events. No risk/protective factors are used, and no measures of statistical
significance can be calculated. To compare between the meta-model predictions and KDE, predictions
from both are divided into five risk categories for the purposes of comparison. We then overlay held out
maltreatment events that were not used to fit the original model and calculate the percent of observed
maltreatment events that fall into each predicted risk category.

Figure 1.15 maps the comparison. The KDE clearly picks up the main areas of recorded events, but also
interpolates high predictions for maltreatment in the areas between and beyond. The meta-model is far
more targeted.

Figure 15 Risk categories from Kernel Density Estimates and the meta model.

Poverty Percentile Median log-dev Median MAE Median child
maltreatment counts

0 0.540 1.05 1,800

1 0.415 1.71 2,026

Page 20 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

Figure 1.16 formalizes the comparison in chart form. The highest risk category for the meta-model captures
approximately 60% of the recorded maltreatment events, whereas the KDE captures only about 35%. This
suggests that the spatial risk model vastly outperforms KDE.

Figure 1.16 Spatial risk model versus Kernel Density Estimate: goodness-of-fit comparison.

Page 21 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

2 Align

2.1 Risk category population totals
The demand for child welfare services is related to the number of people living in high risk areas. Figure
2.1 shows that approximately 33,210 people live in the highest risk category, covering 15.8% of the total
population in Little Rock. Another 28.1% of the population (59,221) reside in the second highest risk
category, indicating, in total, over 44% of the population live in areas of potentially high demand for
child welfare services.

Figure 2.1 Population per risk category.

Page 22 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

2.2 Is poverty related to predicted maltreatment
events?
Figure 2.2 maps the weighted poverty rate by fishnet grid cell. How does the distribution of poverty
relate to maltreatment events?

Figure 2.3 illustrates the relationship between poverty rate and predicted maltreatment count. The
scatter plot demonstrates that the correlation between poverty and predictive risk is marginal. This
visual relationship is confirmed by a correlation coefficient of 0.15. The weak relationship persists even
when the zero count grid cells are removed.

Figure 2.2 Poverty rate by census tract

Page 23 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

2.3

Figure 2.3 Predicted maltreatment counts versus poverty rate.

Page 24 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

Maltreatment risk and child fatalities
Figure 2.4 maps locations of child fatalities over the predicted maltreatment risk categories. The
associated bar plot shows most child fatalities are occurring in the highest risk categories.

Figure 2.4 Predicted risk categories vs child fatalities.

2.4 Protective land uses (DCFS facilities)
The maltreatment predictions suggest where education, outreach, and prevention efforts should occur. What
resources are available at these locations? To answer this question, we use a subset of the original protective
factors data aggregated for the model building exercise. Stakeholders can replicate this approach on any list
of sites that are suitable to host these
interventions.

We then calculate a relative measure of risk
exposure for each DCFS facility by drawing
quarter mile buffers around each site and
taking the mean count of predicted events.
Figure 2.5 plots these buffers and the relative
measure of risk exposure. The table that
follows lists the top 20 individual DCFS facilities
sorted by type and mean predicted count. The
rationale for choosing a quarter mile buffer is
that it is a walkable distance, making it feasible
for residents with transport limitation to reach
by foot.

 Figure 2.5 Mean predicted counts by 1/4-mile buffer.

Page 25 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

The following table lists the ten most optimally located DCFS facilities based on mean predicted count of
maltreatment events within a quarter mile.

Facility Name Facility Type Address Mean Predicted Count

Kennedy Headstart Child Care Center 4901 West 65th Street 12

Above And Beyond Child Care Child Care Center 80 Westminister 11

Buttons & Bows Learning
Center Inc

Child Care Center 4124 West 11th Street 11

Loving Care DCFH Registered Child
Care Family Home

3505 West 10th 11

Redeemed for Christ Child Care Center 3105 W 12TH ST 8

Washington Magnet School Child Care Center 2700 South Main Street 7

Lrsd Care Program
Washington Elementary

Child Care Center 2700 South Main street 7

Stephens Elementary Child Care Center 3700 West 18th Street 7

In A Childs World Child Care Center 9420 Chicot Road 7

From A to Z Preschool Child Care Center 4923 W 12th Street 7

To dig deeper, we will repeat this process for specific types of protective factors, e.g. we can calculate
relative measure of risk exposure for Child Care Centers.

Page 26 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

2.5 Optimally located protective land uses

2.5.1 Optimally Located Child Care Centers

Figure 2.6 plots the relative measure of risk exposure for quarter mile buffers around childcare centers.

Figure 2.6 17Mean predicted count by childcare services

The following table lists the 5 most optimally located childcare facilities based on mean predicted count
of maltreatment events within a quarter mile.

Facility Name Address Mean Predicted Count

TOUCHED BY AN ANGEL 6402 BUTLER RD # E 12

KINDLE LOVIN CARE 3914 W 12TH ST 10

ABOVE & BEYOND CHILD CARE CTR 80 WESTMINISTER DR 10

BUTTONS & BOWS LEARNING CTR 4124 W 11TH ST 9

YOUNG’S DAYCARE CTR 1314 BOOKER ST 9

Page 27 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

Page 28 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

2.5.2 Neighborhood Resource Centers

Figure 2.7 plots the relative measure of risk exposure for quarter mile buffers around neighborhood
resource centers.

Figure 2.7 18Mean predicted count by neighborhood resource centers

The following table lists the five most optimally located neighborhood resource centers based on mean
predicted count of maltreatment events within a quarter mile.

Facility Name Address Mean Predicted Count

Willie L Hinton Neighborhood Resource Center 3805 W 12th Street 11

West Baseline Neighborhood Resource Center 9209 Mann Road 7

Wright Avenue Neighborhood Resource Center 1813 Wright Avenue 5

Southwest Little Rock Neighborhood Resource Center 5621 Valley Drive 5

Oak Forest Neighborhood Resource Center 2823 Tyler Street 4

Page 29 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

2.5.3 Child Youth Centers

Figure 2.8 plots the relative measure of risk exposure for quarter mile buffers around child youth
centers.

Figure 2.8 19Mean predicted count by child and youth services

The following table lists the 5 most optimally located child youth facilities based on mean predicted
count of maltreatment events within a quarter mile.

Facility Name Address Mean Predicted Count

DALTON WHETSTONE BOYS & GIRLS 46 HARROW DR 11

B C D YOUTH CTR 4000 W 13TH ST 10

EXTRAORDINARY YOUTH CTR 6105 LANCASTER RD 7

HINTON GRAHAM & ASSOC 100 S UNIVERSITY AVE # 207 5

COUNSELING & PSYCHOLOGY SVC 100 S UNIVERSITY AVE # 200 5

Page 30 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

2.5.4 Civil & Social Organizations
Figure 2.9 plots the relative measure of risk exposure for quarter mile buffers around civil social
organizations.

Figure 2.9 20Mean predicted count by civil social organizations

The following table lists the 5 most optimally located civil social organizations based on mean predicted
count of maltreatment events within a quarter mile.

Facility Name Address Mean Predicted Count

WOMEN’S PROJECT 3802 W 12TH ST 11

B C D INC 3604 W 12TH ST 11

VINE & VILLAGE 1605 FAIR PARK BLVD 6

AMERICAN LEGION MM EBERTS 315 E CAPITOL AVE 5

WOMEN’S PROJECT 2224 MAIN ST 5

Page 31 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

2.6 Supplementary Material

2.6.1 Correlation

2.6.1.1 Positively correlated variables

Page 32 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

2.6.1.2 Negatively correlated variables

Page 33 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

2.6.2 Choosing a fishnet grid size

2.6.3 Goodness-of-fit Tests

Page 34 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

2.6.4 Tract fixed effects

Page 35 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

2.7 Appendix : R Codes
R codes can be found at this location: https://github.com/DattaHub/PAP-child

if(T){

 library("sf") # Spatial data objects and methods

 library("mapview") # Interactive Map Viewing

 library("ggmap") # ggplot2 addon for base maps

 library("cowplot")

 library("spatstat") # KDE and other spatial functions

 library("raster") # cell-based spatial operations

 library("tidyverse") # data manipulation framework

 library("Hmisc") # using cut2() functions for ggplot legends

 library("fitdistrplus") # Distribution fitting functions

 library("lubridate") # Power tools for handling dates

 library("tidycensus")

 library("lwgeom")

 library("Hmisc")

 library("hrbrthemes")

 library("gridExtra")

 library("patchwork")

 library("spdep") # KNN functions

 library("foreach")

 library("doParallel")

 library("corrplot")

 library("ranger") # randomforest implimentation

 library("glmnet") # for Ridge and Lasso Regression

 library("knitr") # for kable table

 library("kableExtra")

 library("FNN") # KNN for CPS vs. NN plots

 library("groupdata2")

 library("htmltools")

 library("viridis")

 library("viridisLite")

}

mapTheme <- function() {

 theme(

https://github.com/DattaHub/PAP-child

Page 36 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 plot.title = element_text(size = 14, family = "sans", face = "plain", hjust = 0),

 plot.subtitle=element_text(size = 11, family = "sans", hjust = 0),

 plot.caption=element_text(size = 10, family = "sans", face = "italic", hjust = 0),

 axis.text = element_blank(),

 axis.title.x = element_blank(),

 axis.title.y = element_blank(),

 axis.ticks = element_blank(),

 axis.line = element_blank(),

 legend.title = element_text(size = 10, family = "sans"),

 legend.text = element_text(size = 9, family = "sans"),

 panel.border = element_blank()

)

}

plotTheme <- function() {

 theme(

 plot.title = element_text(size = 14, family = "sans", face = "plain", hjust = 0),

 plot.subtitle=element_text(size = 11, family = "sans", hjust = 0),

 plot.caption=element_text(size = 10, family = "sans", face = "italic", hjust = 0),

 axis.title.x = element_text(size = 10, family = "sans", face = "plain", hjust = 1,

vjust = -0.5),

 axis.title.y = element_text(size = 10, family = "sans", face = "plain", hjust = 1,

vjust = 1),

 axis.text = element_text(size = 7, family = "sans", face = "plain"),

 panel.background = element_blank(),

 panel.grid.minor = element_line(colour = "gray"),

 panel.grid.major = element_line(colour = "gray"),

 axis.ticks = element_blank(),

 legend.title = element_text(size = 10, family = "sans"),

 legend.text = element_text(size = 9, family = "sans"),

 axis.line = element_blank()

)

}

if(T){

 mapviewOptions(basemaps = c("Stamen.TonerLite", "OpenStreetMap.DE"))

 base_dir = "C:/Users/jd033/Box/LR-Project"

 fishnet_grid_dim = 1000

Page 37 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 k_direction = 8 # 4 = rook, 8 = queen

 k_nearest_neighbors = 5

 # Either k (e.g. 5 or 10) or "LOOCV"

 n_folds = "LOOCV"

 # threshold quntile for statArea grouping

 stat_area_quantile = 0.60

 # Number of simulations for CPS vs. NN

 simulations = 1000

 # Number of neighbors for CPS vs. NN

 k = 5

 # random seed

 set.seed(11235)

}

Source

source('C:/Users/jd033/Box/Child Maltreatment/R-codes/FUNCTIONS_VAPAP_LR.R', echo = FA

LSE, keep.source = TRUE)

source('C:/Users/jd033/Box/Child Maltreatment/R-codes/FEA_CREATE_VARIABLES_LR_2.R', ec

ho = TRUE, keep.source = TRUE)

2.7.1 LR Tracts

LR tracts data

lr_tract = var_list[["LR_Tracts_Working51"]]

TRACT_AREA_plot <- lr_tract %>%

 ggplot(aes(fill = Area)) +

 geom_sf(color = NA) +

 coord_sf(crs = 2765) +

 scale_fill_viridis_c(option = "plasma") +

 labs(title = "Area")

lr_tract_diss <- lr_tract %>%

 mutate(dissolve = 1) %>%

 # get rid of slivers

 st_buffer(., dist = 0.1) %>%

Page 38 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 group_by(dissolve) %>%

 summarise()

lr_rast_SP <- raster(as(lr_tract_diss, "Spatial"), nrows = 2000, ncol = 2000)

2.7.2 Basemap

var_list[["CPS_Accepted"]] <- var_list[["CM_LR_Matched_Centerline_3857"]]

idx_2 = which(var_names == "CM_LR_Matched_Centerline_3857")

var_list[[idx_2]] <- NULL

cps_base_map <- get_stamenmap(bbox = c(left = -92.52091, bottom = 34.62606, right =

-92.15494, top = 34.82195),

 maptype = "toner-lite")

ggmap(cps_base_map)

Alternative

lr_base_map <- st_union(lr_tract) %>%

 ggplot()+geom_sf(aes(), fill = "grey85", color = NA, size = 1) +

 mapTheme()

get CPS_Accepted values (add 1 column for dissolving)

cps_dissolve <- var_list[["CPS_Accepted"]] %>%

 mutate(value = 1) %>%

 dplyr::select(value)

2.7.3 Count CPS incidents per net cell

net <- st_make_grid(lr_tract, cellsize = fishnet_grid_dim) #%>%st_transform(2756)

cps_dissolve %>% st_crs() == lr_tract %>% st_crs()

count CPS incidents per net cell - really just to get net raster into sf polygon for

mat

Page 39 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

net_agg <- aggregate(cps_dissolve, net , sum) %>%

 tibble::rowid_to_column(.,"net_id")

net_agg_vals = net_agg$value[!is.na(net_agg$value)]

summary(net_agg_vals)

list of net cells IDs that intersect with Little Rock

net_intersect <- st_intersects(lr_tract, net_agg)

extract Little Rock net cells based on intersect ID

net_littlerock <- net_agg[unique(unlist(net_intersect)),]

net_hood <- st_join(net_littlerock, lr_tract, largest = TRUE)

listw <- nb2listw(poly2nb(as(net_littlerock, "Spatial"), queen = TRUE))

Plot fishnet

net_littlerock$value[is.na(net_littlerock$value)] <- 0

FISHNET_plot <- net_littlerock %>%

 ggplot(aes(fill = value)) +

 geom_sf(color = "grey60") +

 coord_sf(crs = 2765) +

 scale_fill_viridis_c(option = "magma") +

 labs(title = "CM per grid-cell")+

 plotTheme()

2.7.4 Population and Other Census Data

acs <- var_list[["LR_BG_Tracts_ACS_DataJoined"]]

acs = acs %>% dplyr::select(Incident_C, TotPopSize, NLTotPop, PopDensity,Perc_Under,

 Perc_Black, Perc_NonWh, Perc_Hispa, Perc_NonMa,

 Perc_FHH,Perc_SingP,PercLowEdu, Perc_Rente,

 Perc_PopUn, Perc_PopSt, Perc_NotIn, Perc_Publi,

 PercHighHH, PercCollEd, Perc_OwnHo)

Page 40 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

acs <- acs %>% rename(Incident_Count_sum = Incident_C,

 Perc_Under18 = Perc_Under,

 Perc_NonMarr_Fam_HH = Perc_NonMa,

 Perc_SingPrnt_HH = Perc_SingP,

 Perc_RenterOcc = Perc_Rente,

 Perc_PopUnder18inPov = Perc_PopUn,

 Perc_PopStrugg = Perc_PopSt,

 Perc_NotInsured = Perc_NotIn,

 Perc_PublicInsure = Perc_Publi)

acs_pop <- acs %>% dplyr::select(TotPopSize)

The number 2.29568e-5 is sq ft to acre conversion.

if you download from ACS using tidycensus, the variable name is "value", here it's

TotPopSize.

acs_pop <- acs_pop %>%

 mutate(acre = as.numeric(st_area(acs)*2.29568e-5),

 # acre = units::set_units(acre, acre),

 pop_acre_rate = TotPopSize / acre)

POP_ACRE_RATE_plot <- acs_pop %>%

 ggplot(aes(fill = pop_acre_rate)) +

 geom_sf(color = NA) +

 coord_sf(crs = 2765) +

 scale_fill_viridis_c(option = "magma") +

 labs(title = "Population per acre")+

 plotTheme()

net_blocks_intersect <- st_intersection(acs_pop, net_littlerock)

group by cell and calc block stats.

net_blocks_intersect <- net_blocks_intersect %>%

 mutate(intersect_area_acres = as.numeric(st_area(net_blocks_intersect)*2.29568e-5))

%>%

 group_by(net_id) %>%

Page 41 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 mutate(cnt = n(),

 pcnt_of_block = intersect_area_acres/acre,

 intersect_pop = TotPopSize * pcnt_of_block) %>%

 arrange(net_id)

2.7.5 Summarize population

Summarize pop

fishnet_pop <- net_blocks_intersect %>% # xcc

 group_by(net_id) %>%

 summarise(net_pop = sum(intersect_pop)) %>%

 filter(net_pop > 0) # <- zeros or no zeros!!!!

BASIC_FISHNET_plot <-fishnet_pop %>%

 ggplot(aes(fill = net_pop)) +

 geom_sf(color = NA) +

 scale_fill_viridis_c(option = "plasma") +

 labs(title = "Net Pop")

######### MAKE NET AND RATE FOR ALL CPS VARS

CPS_vars <- grep("CPS_",names(var_list), value = TRUE)

CPS_agg <- NULL

for(i in seq_along(CPS_vars)){

 var_name <- paste0("net_",CPS_vars[i])

 cat(var_name,"\n")

 CPS_dat <- var_list[[CPS_vars[i]]] %>%

 mutate(value = 1) %>%

 dplyr::select(value)

 fishnet_CPS_var <- aggregate(x = CPS_dat, by = fishnet_pop, FUN = sum) %>%

 st_drop_geometry() %>%

 mutate(Feature = var_name) %>%

 dplyr::select(Feature,value)

 CPS_agg <- rbind(CPS_agg, fishnet_CPS_var)

Page 42 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

}

CPS_agg <- CPS_agg %>%

 mutate(id = rep(seq(1:nrow(fishnet_pop)),length(CPS_vars))) %>%

 spread(Feature, value) %>%

 dplyr::select(-id) %>%

 mutate(geometry = fishnet_pop$geometry) %>%

 st_as_sf()

Spatial join of fishnet_pop and fishnet_cps to then calculate rate for all CPS fe

atures

fishnet_pop_cps <- st_join(fishnet_pop, CPS_agg, join = st_equals) %>%

 mutate_at(vars(paste0("net_",CPS_vars)), funs(rate = ./(net_pop/100))) %>% # cps pe

r 100 person

 # rename_at(vars(contains("_rate")), .funs = list(paste("rate", gsub("net_|_rate",

"", .), sep = "_"))) %>%

 replace(is.na(.), 0) # replace NA with zero

fishnet_coords <- fishnet_pop_cps %>%

 st_centroid() %>%

 st_coordinates() %>%

 as.matrix()

2.7.6 CM Count by fishnet

fishnet_pop_cps_cut <- fishnet_pop_cps %>%

 mutate(net_CPS_Accepted = ifelse(is.na(net_CPS_Accepted), 0, net_CPS_Accepted)) %>%

 make_cuts(., "net_CPS_Accepted", cuts = "breaks", n_breaks = 10)

CPS_COUNT_BY_FISHNET_PLOT <- lr_base_map + #ggplot() + #ggmap(cps_base_map) +

 geom_sf(data = ll(fishnet_pop_cps_cut), aes(fill = cut_val), inherit.aes = FALSE, co

lor = NA, alpha = 0.8) +

 labs(title = "CPS count per\nfishnet cell") +

 scale_fill_viridis_d(na.value = NA, option = "D", direction = 1, name = "CPS Count")

+

 mapTheme() +

 theme(plot.title = element_text(size = 14, family = "sans", face = "plain", hjust =

0),

Page 43 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 plot.subtitle=element_text(size = 11, family = "sans", hjust = 0),

 plot.caption=element_text(size = 10, family = "sans", face = "italic", hjust =

0),

 axis.line = element_blank(),

 legend.title = element_text(size = 10, family = "sans"),

 legend.text = element_text(size = 9, family = "sans"))

fishnet_pop_cps <- fishnet_pop_cps %>% rename(rate_CPS_Accepted = rate)

fishnet_pop_cps_rate_cut <- fishnet_pop_cps %>%

 mutate(rate_CPS_Accepted = ifelse(is.na(rate_CPS_Accepted), 0, rate_CPS_Accepted)) %

>%

 make_cuts(., "rate_CPS_Accepted", cuts = "breaks", n_breaks = 10)

CPS_RATE_BY_FISHNET_PLOT <- ggplot() + #ggmap(cps_base_map) +

 geom_sf(data = ll(fishnet_pop_cps_rate_cut), aes(fill = cut_val), inherit.aes = FALS

E, color = NA, alpha = 0.8) +

 labs(title = "Child Protective Service rate\nper 100 people") +

 scale_fill_viridis_d(na.value = NA, option = "D", direction = 1, name = "CPS Rate\np

er 100") +

 mapTheme() +

 theme(plot.title = element_text(size = 14, family = "sans", face = "plain", hjust =

0),

 plot.subtitle=element_text(size = 11, family = "sans", hjust = 0),

 plot.caption=element_text(size = 10, family = "sans", face = "italic", hjust =

0),

 axis.line = element_blank(),

 legend.title = element_text(size = 10, family = "sans"),

 legend.text = element_text(size = 9, family = "sans"))

2.7.7 CPS counts by month and year

CPS_Counts_Year_table <- table(lubridate::year(var_list[["CPS_Accepted"]]$Referral_D)

)

CPS_Counts_Month_table <- table(lubridate::month(var_list[["CPS_Accepted"]]$Referral_D

))

2.7.8 CPS histogram by date

CPS_by_year <- lubridate::year(var_list[["CPS_Accepted"]]$Referral_D) %>%

 data.frame(year = .)

Page 44 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

CPS_HIST_BY_DATE <- ggplot(CPS_by_year, aes(x = year)) +

 geom_histogram() +

 plotTheme()

2.7.9 CPS points by month plot

months <- c("January", "February", "March", "April",

 "May", "June", "July","August",

 "September", "October", "November", "December")

cps <- var_list[["CPS_Accepted"]] %>%

 mutate(year = lubridate::year(Referral_D),

 month = lubridate::month(Referral_D),

 month = months[month],

 month = fct_relevel(month, months))

CPS_POINT_BY_MONTH_plot <- ggplot()+#ggmap(cps_base_map) +

 geom_point(data = data.frame(st_coordinates(ll(cps)), year = cps$year),

 aes(x=X, y=Y, color = as.factor(year)), size=1.5, alpha = 0.8) +

 scale_color_viridis_d(name = "Year") +

 labs(title = "CPS Accepted in Little Rock, AR by Year",

 caption = "source: **************") +

 facet_wrap(~year) +

 mapTheme() +

 theme(

 legend.key = element_rect(fill = "white"),

 strip.text = element_text(face = "plain", size = 11),

 legend.position = c(0.85, 0.25) # or "none

)

2.7.10 CPS KDE by Year plot

variable = "year"

values <- unique(cps[[variable]])

year_dat <- list()

brks <- 9

window_cps <- get_window(cps, buff_dist = 10000)

for(i in seq_along(values)){

Page 45 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 dat <- filter(cps, !!as.name(variable) == values[i])

 points.ppp <- as.ppp(st_coordinates(ll(dat)),window_cps)

 densityRaster <- raster(density(points.ppp, scalekernel=TRUE, sigma = 0.005))

 dens_data <- gplot_data(densityRaster, maxpixels = 2500) %>%

 mutate(!!as.name(variable) := values[i])

 year_dat[[i]] <- dens_data

}

year_dat <- do.call(rbind, year_dat)

CPS_KDE_BY_YEAR_plot <- ggplot() + #ggmap(cps_base_map) +

 geom_tile(data = year_dat,

 aes(x,y,fill = as.factor(ntile(value,brks)),

 group = !!as.name(variable)), alpha=0.8) +

 scale_fill_viridis_d(name = variable) +

 labs(title = "CPS accepted in Little Rock, VA by year",

 caption = "Figure 5.2") +

 facet_wrap(vars(!!as.name(variable))) +

 mapTheme() +

 theme(

 legend.key = element_rect(fill = "white"),

 strip.text = element_text(face = "plain", size = 11, hjust = 0),

 strip.background = element_rect(fill = "white"),

 legend.position = "none"

)

2.7.11 CPS trend by month and year

CPS_KDE_BY_YEAR_plot

CPS_by_year_month <- st_drop_geometry(var_list[["CPS_Accepted"]]) %>%

 mutate(month = lubridate::month(Referral_D),

 year = lubridate::year(Referral_D))%>%

 dplyr::select(month, year) %>%

 group_by(month, year) %>%

 mutate(m_count = n()) %>%

 distinct() %>%

 ungroup()

Page 46 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

CPS_TREND_BY_MONTH_YEAR_plot <- ggplot(CPS_by_year_month, aes(x = year, y = m_count))

+

 geom_point() +

 geom_smooth(method = lm, formula = y ~ splines::bs(x, 3)) +

 labs(y="Incidents per month") +

 plotTheme()

2.7.12 CPS Line Agg by Month

CPS_agg_by_month <- st_drop_geometry(var_list[["CPS_Accepted"]]) %>%

 mutate(month = lubridate::month(Referral_D),

 year = lubridate::year(Referral_D))%>%

 group_by(month) %>%

 summarise(count = n())

CPS_LINE_AGG_BY_MOTNH_plot <- ggplot(CPS_agg_by_month, aes(x = month, y = count)) +

 scale_x_continuous(breaks = seq(1,12), labels = seq(1,12)) +

 geom_line() +

 plotTheme()

CPS_normalized_by_month <- st_drop_geometry(var_list[["CPS_Accepted"]]) %>%

 mutate(month = lubridate::month(Referral_D),

 year = lubridate::year(Referral_D)) %>%

 group_by(year, month) %>%

 summarise(m_total = n()) %>%

 arrange(month, year) %>%

 dplyr::select(month, year, m_total) %>%

 ungroup() %>%

 group_by(month) %>%

 mutate(m_mean = mean(m_total),

 m_sd = sd(m_total),

 m_z = (m_total - m_mean) / m_sd)

CPS_LINE_NORMALIZED_plot <- ggplot(CPS_normalized_by_month, aes(x = as.factor(month),

 y = m_z, group = year,

 color = as.factor(year

))) +

Page 47 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 geom_line() +

 geom_hline(yintercept = 0, color = "gray20", linetype = "dashed") +

 scale_color_viridis_d(name = "year") +

 labs(x = "month") +

 scale_y_continuous(limits = c(-2,2)) +

 plotTheme()

CPS_LINE_NORMALIZED_plot

2.7.13 CPS Calendar plot

CPS_agg_cal <- st_drop_geometry(var_list[["CPS_Accepted"]]) %>%

 mutate() %>%

 mutate(day = factor(weekdays(Referral_D,T),

 levels = rev(c("Mon", "Tue", "Wed", "Thu","Fri", "Sat", "Sun")))

,

 week = week(Referral_D),

 month = month(Referral_D),

 year = year(Referral_D)) %>%

 dplyr::select(day, week, month, year) %>%

 group_by(day, week, month, year) %>%

 summarise(day_cnt = n()) %>%

 complete(day, week, month, year)

CPS_CALENDAR_plot <- ggplot(CPS_agg_cal, aes(x = week, y = day, fill = day_cnt)) +

 viridis::scale_fill_viridis(name="Incidents",

 option = 'C',

 direction = 1,

 na.value = "gray90") +

 geom_tile(color = 'white', size = 0.1) +

 facet_wrap('year', ncol = 1) +

 scale_x_continuous(

 expand = c(0, 0),

 breaks = seq(1, 52, length = 12),

 labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun",

 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) +

 theme_ipsum_rc()

Page 48 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

2.7.14 CPS compare fishnet grid size

grid_seq <- c(500,1000,1500)

p_loc_l <- vector(mode = "list", length = length(grid_seq))

p_hist_l <- vector(mode = "list", length = length(grid_seq))

for(i in seq_along(grid_seq)){

 cat(grid_seq[i], "\n")

 net_i <- st_make_grid(lr_tract, cellsize = grid_seq[i])

 net_agg_i <- aggregate(cps_dissolve, net_i, sum) %>%

 mutate(value = ifelse(is.na(value),0,value))

 net_intersect_i <- st_intersects(lr_tract, net_agg_i)

 # extract Little Rocks net cells based on intersect ID

 net_littlerock_i <- net_agg_i[unique(unlist(net_intersect_i)),]

 net_littlerock_i$class <- Hmisc::cut2(net_littlerock_i$value, g = 9)

 p_loc <- ggplot() + #ggmap(cps_base_map) +

 geom_sf(data = ll(net_littlerock_i), aes(fill = class),

 color = NA, inherit.aes = FALSE, size = 0.5, alpha = 0.8) +

 scale_fill_viridis_d(na.value=NA,

 name = paste0("Values","\n[quantiles]"),

 breaks = levels(net_agg_i$class),

 labels = levels(net_agg_i$class)) +

 mapTheme()

 p_loc_l[[i]] <- p_loc

 p_hist <- ggplot(net_littlerock_i, aes(x=value)) +

 geom_histogram(bins = 30) +

 # scale_x_continuous(limits = c(-1,100)) +

 # scale_y_continuous(limits = c(0,15)) +

 labs(title = paste0("Cell Dimensions =\n",grid_seq[i]," ft sq")) +

 plotTheme()

 p_hist_l[[i]] <- p_hist

}

Page 49 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

CPS_COMPARE_FISHNET_GRID_SIZE_3x2_plot <- grid.arrange(p_hist_l[[1]], p_hist_l[[2]], p

_hist_l[[3]], p_loc_l[[1]], p_loc_l[[2]], p_loc_l[[3]], ncol = 3)

CPS_COMPARE_FISHNET_GRID_SIZE_3x2_plot

number <- as.numeric(na.omit(fishnet_pop_cps$net_CPS_Accepted))

fitp <- fitdist(number,"pois", discrete = TRUE)

fitnb <- fitdist(number,"nbinom", discrete = TRUE)

cdfcomp(list(fitp,fitnb)) # plot

gof <- gofstat(list(fitp,fitnb))

2.7.15 AIC calculation for Poisson and Negative Binomial

net_cell_dims <- seq(500,5000,50)

aic_results <- matrix(nrow=length(net_cell_dims), ncol = 3)

colnames(aic_results) <- c("cell_dim","pois","nbinom")

for(i in seq_along(net_cell_dims)){

 net <- st_make_grid(lr_tract,cellsize=net_cell_dims[i])

 cps_cnt <- aggregate(cps_dissolve, net, sum)

 number <- as.numeric(na.omit(cps_cnt$value))

 fitp <- fitdist(number,"pois", discrete = TRUE)

 fitnb <- fitdist(number,"nbinom", discrete = TRUE)

 gof <- gofstat(list(fitp,fitnb))

 aic_results[i,1] <- net_cell_dims[i]

 aic_results[i,2] <- as.numeric(gof$bic[1])

 aic_results[i,3] <- as.numeric(gof$bic[2])

}

AIC_LINE_FITDISTR_plot <- data.frame(aic_results) %>%

 gather(dist, aic, -cell_dim) %>%

 rename("Distribution" = dist) %>%

 mutate(Distribution = case_when(

 Distribution == "nbinom" ~ "Negative Binomial",

 Distribution == "pois" ~ "Poisson"

)) %>%

Page 50 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 ggplot(., aes(x = cell_dim, y = aic, group = Distribution, color = Distribution)) +

 geom_line() +

 labs(y = "AIC - goodness of fit",

 x = "Fishnet Cell Dimension (feet)") +

 plotTheme()

2.7.16 Protective and Risk Variables

protective_names <- c("Banks",

 "GrocerySuperMarket",

 "HighSchoolsPublic",

 "HotelMotel",

 "ChildCareServices",

 "ChildYouthServices",

 "CivilSocialOrgs",

 "Hospitals",

 "NeighborhoodResourceCenters",

 "PoliceFacilities",

 "ReligiousOrgs")

risk_names <- c("CRIME_THEFT OF PROPERTY FELONY",

 "CRIME_BURGLARY - RESIDENTIAL",

 "CRIME_AGGRAVATED ASSAULT",

 "CRIME_TERRORISTIC ACT",

 "CRIME_THEFT OF PROPERTY MISD",

 "CRIME_RAPE",

 "CRIME_BATTERY 2ND DEGREE",

 "CRIME_DOMESTIC BATTERING 2ND DEGREE",

 "CRIME_BREAKING OR ENTERING VEHICLE" ,

 "CRIME_AGGRAVATED ROBBERY (INDIVIDUAL)",

 "CRIME_ROBBERY (INDIVIDUAL)" ,

 "CRIME_AGGRAVATED ASSAULT ON AN FAMILY OR HOUSEHOLD MEMBER",

 "CRIME_BURGLARY COMMERCIAL" ,

 "CRIME_BATTERY 1ST DEGREE",

 "BarberAndBeautyShops",

 "BusStops",

 "CheckCashingAndPawn",

Page 51 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 "FastFoodAndBeverage",

 "GasStationAndConvMart",

 "HotelMotel",

 "LiquorStores",

 "MajorDeptRetailDiscount",

 "MixedDrink_BarRestClub",

 "Rental_MobileHomes",

 "Rental_SingleToQuad",

 "Rentals_Apts_LessThan100units",

 "Rentals_Apts_Over100units",

 "TattooPiercing",

 "Unsafe_Vacant_BldgsNEW")

risk_var_list <- var_list[grep(paste(risk_names,collapse="|"), names(var_list), value

= TRUE)]

protective_var_list <- var_list[grep(paste(protective_names,collapse="|"), names(var_l

ist), value = TRUE)]

risk_plot_dat <- list()

brks <- 9

window_cps <- get_window(cps, buff_dist = 10000)

for(i in seq_along(risk_var_list)){

 var_dat <- risk_var_list[[i]]

 points.ppp <- as.ppp(st_coordinates(ll(var_dat)),window_cps)

 densityRaster <- raster(density(points.ppp, scalekernel=TRUE, sigma = 0.005))

 dens_data <- gplot_data(densityRaster, maxpixels = 2500) %>%

 mutate(variable = names(risk_var_list)[i])

 risk_plot_dat[[i]] <- dens_data

}

risk_plot_dat <- do.call(rbind, risk_plot_dat)

one-liner to extract all 'geometry' cols from list and rbind

risk_compile <- sf::st_as_sf(data.table::rbindlist(lapply(risk_var_list, '[', "geometr

y")))

risk.points.ppp <- as.ppp(st_coordinates(ll(risk_compile)),window_cps)

risk_densityRaster <- raster(density(risk.points.ppp, scalekernel=TRUE, sigma = 0.005)

)

risk_aggregate_plot_data <- gplot_data(risk_densityRaster, maxpixels = 2500) %>%

 mutate(variable = "Risk")

Page 52 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

KDE Risk

risk_plot_xy <- risk_plot_dat %>% dplyr::select(x,y)

library(proj4)

proj4string <- "+proj=utm +zone=19 +south +ellps=WGS84 +datum=WGS84 +units=m +no_def

s "

pj = project(risk_plot_xy, proj4string, inverse=TRUE)

risk_latlon <- data.frame(lat=pj$y, lon=pj$x)

risk_plot_latlon = cbind(risk_plot_dat, risk_latlon)

RISK_KDE_FACET_PLOT <- ggplot() + #ggmap(cps_base_map) +

 geom_tile(data = risk_plot_dat,

 aes(x,y, fill = as.factor(ntile(value,brks)),

 group = variable), alpha=0.8) +

 scale_fill_viridis_d(name = variable) +

 facet_wrap(~variable) +

 labs(title = "Spatial density of risk factors",

 caption = "Figure 5.4") +

 mapTheme() +

 theme(

 legend.key = element_rect(fill = "white"),

 strip.text = element_text(face = "plain", size = 11, hjust = 0),

 legend.position = "none",

 strip.background = element_rect(fill = "white")

)

RISK_KDE_FACET_PLOT

RISK_KDE_PLOT <- ggplot() + #ggmap(cps_base_map) +

 geom_tile(data = risk_aggregate_plot_data,

 aes(x,y,fill = as.factor(ntile(value,brks)),

 group = variable), alpha=0.6) +

 scale_fill_viridis_d(name = variable) +

 #facet_wrap(~variable) +

 mapTheme() +

 theme(

 legend.key = element_rect(fill = "white"),

 strip.text = element_text(face = "plain", size = 11),

Page 53 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 legend.position = "none"

)

RISK_KDE_PLOT

protective_plot_dat <- list()

window_cps <- get_window(cps, buff_dist = 10000)

for(i in seq_along(protective_var_list)){

 var_dat <- protective_var_list[[i]]

 points.ppp <- as.ppp(st_coordinates(ll(var_dat)),window_cps)

 densityRaster <- raster(density(points.ppp, scalekernel=TRUE, sigma = 0.005))

 dens_data <- gplot_data(densityRaster, maxpixels = 2500) %>%

 mutate(variable = names(protective_var_list)[i])

 protective_plot_dat[[i]] <- dens_data

}

protective_plot_dat <- do.call(rbind, protective_plot_dat)

one-liner to extract all 'geometry' cols from list and rbind

protective_compile <- sf::st_as_sf(data.table::rbindlist(lapply(protective_var_list, '

[', "geometry")))

protective.points.ppp <- as.ppp(st_coordinates(ll(protective_compile)),window_cps)

protective_densityRaster <- raster(density(protective.points.ppp, scalekernel=TRUE, si

gma = 0.005))

protective_aggregate_plot_data <- gplot_data(protective_densityRaster, maxpixels = 250

0) %>%

 mutate(variable = "Protective")

PROTECTIVE_KDE_FACET_PLOT <- ggplot() + #ggmap(cps_base_map) +

 # geom_point(data = data.frame(st_coordinates(ll(cps)),

 # month = cps[[variable]]),

 # aes(x=X, y=Y), size = 1, color = "gray30", alpha = 0.75) +

 geom_tile(data = protective_plot_dat,

 aes(x,y,fill = as.factor(ntile(value,brks)),

 group = variable), alpha=0.8) +

 scale_fill_viridis_d(name = variable) +

 facet_wrap(~variable) +

 labs(title = "Spatial density of protective factors",

 caption = "Figure 5.3") +

 mapTheme() +

 theme(

Page 54 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 legend.key = element_rect(fill = "white"),

 strip.text = element_text(face = "plain", size = 11, hjust = 0),

 legend.position = "none",

 strip.background = element_rect(fill = "white")

)

PROTECTIVE_KDE_PLOT <- ggplot()+ #ggmap(cps_base_map) +

 geom_tile(data = protective_aggregate_plot_data,

 aes(x,y,fill = as.factor(ntile(value,brks)),

 group = variable), alpha=0.6) +

 scale_fill_viridis_d(name = variable) +

 #facet_wrap(~variable) +

 mapTheme() +

 theme(

 legend.key = element_rect(fill = "white"),

 strip.text = element_text(face = "plain", size = 11),

 legend.position = "none"

)

PROTECTIVE_KDE_PLOT

fishnet_knn <- knn2nb(knearneigh(fishnet_coords, k_direction))

fishnet_Weights <- nb2listw(fishnet_knn, style="W")

localMorans <- as.data.frame(localmoran(fishnet_pop_cps$net_CPS_Accepted, fishnet_Wei

ghts))

globalMorans <- moran.mc(fishnet_pop_cps$net_CPS_Accepted, fishnet_Weights, nsim=999)

GLOBAL_MORANS_PERMUTATION_plot <- ggplot(data.frame(res = globalMorans$res)[1:999,,0],

aes(res)) +

 geom_histogram(binwidth = 0.01) +

 geom_vline(aes(xintercept = globalMorans$statistic), colour = "red",size=1) +

 scale_x_continuous(limits = c(-1, 1)) +

 labs(title="Observed and permuted Moran's I",

 x = "Simulated Moran's I Value") +

 plotTheme()

fishnet_pop_cps_morans <- fishnet_pop_cps

fishnet_pop_cps_morans$Ii <- localMorans$Ii

fishnet_pop_cps_morans$pvalue <- localMorans$`Pr(z > 0)`

fishnet_pop_cps_morans <- cbind(fishnet_coords, fishnet_pop_cps_morans)

Page 55 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

fishnet_pop_cps_morans_cut <- make_cuts(fishnet_pop_cps_morans, "net_CPS_Accepted",

 cuts = "breaks", n_breaks = 10)

Next chunk

plot_cps <- lr_base_map + #ggplot() + #ggmap(cps_base_map) +

 geom_sf(data = ll(fishnet_pop_cps_morans_cut), aes(fill = cut_val),

 color = NA, inherit.aes = FALSE, alpha = 0.8) +

 scale_fill_viridis_d(na.value=NA, name = "Maltreatment\nEvents") +

 labs(title = "Panel 1",

 subtitle = "CPS count by fishnet") +

 mapTheme() +

 theme(plot.title = element_text(size = 14, family = "sans", face = "plain", hjust =

0),

 plot.subtitle=element_text(size = 11, family = "sans", hjust = 0),

 plot.caption=element_text(size = 10, family = "sans", face = "italic", hjust =

0),

 axis.line = element_blank(),

 legend.title = element_text(size = 10, family = "sans"),

 legend.text = element_text(size = 9, family = "sans"))

Ii_cut <- fishnet_pop_cps_morans %>%

 mutate(Ii_cut_val = as.character(Hmisc::cut2(.$Ii,

 cuts = as.numeric(quantile(round(fishne

t_pop_cps_morans$Ii,2),

 na.rm=T, p =

seq(0,1,0.25))))))

plot_Ii <- lr_base_map + #ggplot() + #ggmap(cps_base_map) +

 geom_sf(data = ll(Ii_cut), aes(fill = Ii_cut_val),

 color = NA, inherit.aes = FALSE, alpha = 0.8) +

 scale_fill_viridis_d(na.value=NA, name = "I value", option = "D") +

 labs(title = "Panel 2",

 subtitle = "Local Moran's I value") +

 mapTheme() +

 theme(plot.title = element_text(size = 14, family = "sans", face = "plain", hjust =

0),

 plot.subtitle=element_text(size = 11, family = "sans", hjust = 0),

 plot.caption=element_text(size = 10, family = "sans", face = "italic", hjust =

0),

 axis.line = element_blank(),

Page 56 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 legend.title = element_text(size = 10, family = "sans"),

 legend.text = element_text(size = 9, family = "sans"))

p_cut <- fishnet_pop_cps_morans %>%

 mutate(pval_cut = ifelse(pvalue > 0.05, "Not\nSignificant", "Significant"))

plot_p <- lr_base_map + #ggplot() + #ggmap(cps_base_map) +

 geom_sf(data = ll(p_cut), aes(fill = pval_cut),

 color = NA, inherit.aes = FALSE, alpha = 0.8) +

 scale_fill_viridis_d(na.value=NA, name = "p-value", option = "D") +

 labs(title = "Panel 3",

 subtitle = "Stastically significant\nmaltreatment clusters",

 caption = "Figure 5.5") +

 mapTheme() +

 theme(plot.title = element_text(size = 14, family = "sans", face = "plain", hjust =

0),

 plot.subtitle=element_text(size = 11, family = "sans", hjust = 0),

 plot.caption=element_text(size = 10, family = "sans", face = "italic", hjust =

0),

 axis.line = element_blank(),

 legend.title = element_text(size = 10, family = "sans"),

 legend.text = element_text(size = 9, family = "sans"))

MORANS_I_P_plot <- cowplot::plot_grid(plot_cps, plot_Ii, plot_p, ncol =1, align = "hv"

, axis = "lrbt")

#cowplot::plot_grid(plot_cps, plot_Ii, plot_p,rel_widths = c(0.9,0.9,0.9),ncol = 1, al

ign = "v")

MORANS_I_P_plot

2.7.17 Aggregate features

cl <- makePSOCKcluster(3)

registerDoParallel(cl)

source('C:/Users/jd033/Box/Child Maltreatment/R-codes/FUNCTIONS_VAPAP_LR.R')

agg_results <- Aggregate_points_Features(var_list, net_littlerock)

ED_results <- Euclidean_point_features(var_list,

 lr_rast_SP,

Page 57 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 lr_tract_diss,

 net_littlerock)

NN_results <- NN_point_features(var_list, net_littlerock, k_nearest_neighbors)

stopCluster(cl)

2.7.18 Aggregating all features, creating correlation plots and
fitting three different models

sf1_tract <- acs %>% dplyr::select(-Incident_Count_sum, -TotPopSize, -NLTotPop)

sf1_tract <- sf1_tract %>%

 mutate(acre = as.numeric(st_area(acs)*2.29568e-5))

vars_sf1_desc <- sf1_tract %>% st_drop_geometry() %>% dplyr::select(starts_with("P"))%

>% names()

net_blocks_intersect <- st_intersection(sf1_tract, net_littlerock)

group by cell and calc block stats.

net_blocks_intersect2 <- net_blocks_intersect %>%

 mutate(intersect_area_acres = as.numeric(st_area(net_blocks_intersect)*2.29568e-5))

%>%

 group_by(net_id) %>%

 mutate(cnt = n(),

 pcnt_of_block = intersect_area_acres/acre) %>%

 # intersect_pop = value * pcnt_of_block) %>%

 arrange(net_id) %>%

 mutate_at(vars(matches("^P|^T")), funs(.* pcnt_of_block))

summarise intersect pops to each net cell and create pop rates for some

fishnet_sf1 <- net_blocks_intersect2 %>% # xcc

 group_by(net_id) %>%

 summarise_at(vars(matches("^P|^H")), funs(sum)) %>%

 dplyr::select(-pcnt_of_block)

cast data frame to list of variables

Page 58 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

sf1_results <- fishnet_sf1 %>%

 gather(variable, value, -net_id, -geometry) %>%

 mutate(feature_name = paste0("SF1_",variable)) %>%

 group_by(variable) %>%

 nest() %>%

 pull(data)

names(sf1_results) <- paste0("SF1_",setdiff(colnames(fishnet_sf1), c("net_id","geometr

y")))

fishnet_pop_cps_net <- fishnet_pop_cps %>%

 dplyr::select(net_id, net_pop, rate_CPS_Accepted, net_CPS_Accepted) %>%

 rename(cps_rate = rate_CPS_Accepted,

 cps_net = net_CPS_Accepted)

NN features combine

features <- data.frame(net_id = NN_results[[1]]$net_id, stringsAsFactors = FALSE)

for(i in seq_along(NN_results)){

 feat_i <- NN_results[[i]] %>%

 st_drop_geometry() %>%

 dplyr::select(net_id, feature_name, value) %>%

 spread(feature_name, value)

 features <- left_join(features, feat_i, by = "net_id")

}

join features to our target of cps_rate

NN_features <- features %>%

 left_join(., st_drop_geometry(fishnet_pop_cps_net), by = "net_id")

features <- data.frame(net_id = ED_results[[1]][[1]]$net_id, stringsAsFactors = FALSE)

for(i in seq_along(ED_results[[1]])){

 feat_i <- ED_results[[1]][[i]] %>%

 st_drop_geometry() %>%

 dplyr::select(net_id, feature_name, value = mean_dist) %>% ### mean_dist !!!

Page 59 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 spread(feature_name, value)

 features <- left_join(features, feat_i, by = "net_id")

}

join features to our target of cps_rate

ED_features <- features %>%

 left_join(., st_drop_geometry(fishnet_pop_cps_net), by = "net_id")

agg_feature_combine

features <- data.frame(net_id = agg_results[[1]]$net_id, stringsAsFactors = FALSE)

for(i in seq_along(ED_results[[1]])){

 feat_i <- agg_results[[i]] %>%

 st_drop_geometry() %>%

 dplyr::select(net_id, feature_name, value) %>%

 spread(feature_name, value)

 features <- left_join(features, feat_i, by = "net_id")

}

join features to our target of cps_rate

agg_features <- features %>%

 left_join(., st_drop_geometry(fishnet_pop_cps_net), by = "net_id")

sf1-features-combine

features <- data.frame(net_id = sf1_results[[1]]$net_id, stringsAsFactors = FALSE)

for(i in seq_along(sf1_results)){

 feat_i <- sf1_results[[i]] %>%

 st_drop_geometry() %>%

 dplyr::select(net_id, feature_name, value) %>%

 spread(feature_name, value)

 features <- left_join(features, feat_i, by = "net_id")

}

join features to our target of cps_rate

sf1_features <- features %>%

 left_join(., st_drop_geometry(fishnet_pop_cps_net), by = "net_id")

corr feature remove NA

Page 60 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

cor_NN_features <- NN_features %>%

 mutate_all(funs(replace(., is.na(.), 0))) %>%

 dplyr::select(-net_id)

cor_agg_features <- agg_features %>%

 mutate_all(funs(replace(., is.na(.), 0))) %>%

 dplyr::select(-net_id)

cor_ED_features <- ED_features %>%

 mutate(cps_rate = ifelse(is.na(cps_rate),0,cps_rate),

 net_pop = ifelse(is.na(net_pop),0,net_pop)) %>%

 na.omit() %>%

 dplyr::select(-net_id)

cor_sf1_features <- sf1_features %>%

 mutate(cps_rate = ifelse(is.na(cps_rate),0,cps_rate),

 net_pop = ifelse(is.na(net_pop),0,net_pop)) %>%

 na.omit() %>%

 dplyr::select(-net_id)

combine all features

ALL_FEATURES <- full_join(NN_features, agg_features, by = "net_id") %>%

 full_join(.,ED_features, by = "net_id") %>%

 full_join(.,sf1_features, by = "net_id")

all.equal(ALL_FEATURES$cps_rate.x, ALL_FEATURES$cps_rate.y,

 ALL_FEATURES$cps_rate.x.x, ALL_FEATURES$cps_rate.y.y)

NN_CPS_Accepted <- ALL_FEATURES$NN_CPS_Accepted

ALL_FEATURES <- ALL_FEATURES %>%

 dplyr::select(-cps_rate.y, -cps_rate.x.x, -cps_rate.y.y,

 -cps_net.y, -cps_net.x.x, -cps_net.y.y,

 -net_pop.y, -net_pop.x.x, -net_pop.y.y) %>%

 dplyr::select(-contains("_CPS_")) %>%

 dplyr::rename(cps_net = cps_net.x,

 cps_rate = cps_rate.x,

Page 61 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 net_pop = net_pop.x) %>%

 mutate_all(funs(replace(., is.na(.), 0))) %>%

 dplyr::rename_all(funs(make.names(.)))

add NN_CPS_Accepted back in to ALL_FEATURES

ALL_FEATURES$NN_CPS_Accepted <- NN_CPS_Accepted

Corr all plot

cps_cor_ALL <- cor(ALL_FEATURES)

All_cors <- cps_cor_ALL[,"cps_net"]

p.mat_ALL <- cor.mtest(ALL_FEATURES)$p

p.mat_ALL <- p.mat_ALL[,which(colnames(cps_cor_ALL)=="cps_net")]

cor_ALL_plot <- data.frame(feature = names(All_cors),

 cor = as.numeric(All_cors),

 p_value = p.mat_ALL) %>%

 filter(!(feature %in% c("cps_rate","cps_net","net_pop","net_cps","net_id"))) %>%

 filter(!(feature %in% grep("CPS", names(All_cors),value=T))) %>%

 arrange(desc(cor)) %>%

 mutate(p_value = ifelse(p_value >= 0.05, "Not Significant", "Significant"))

cor_ALL_plot$feature <- factor(cor_ALL_plot$feature,

 levels=cor_ALL_plot[order(cor_ALL_plot$cor,

 decreasing=F),]$feature)

corr line positive feature

CORR_LINE_POSITIVE_FEATURE_plot <- ggplot(dplyr::filter(cor_ALL_plot,cor >= 0),

 aes(x = feature, y = cor, color = factor(p_v

alue))) +

 geom_segment(aes(x = feature, y = 0, xend = feature, yend = cor), color = "grey50")

+

 geom_point() +

 coord_flip() +

 scale_color_discrete(name = "p-value") +

 theme_bw()+

Page 62 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 theme(axis.text.y = element_text(size=8))

CORR_LINE_POSITIVE_FEATURE_plot

corr line negative feature plot

CORR_LINE_NEGATIVE_FEATURE_plot <- ggplot(dplyr::filter(cor_ALL_plot,cor <= 0),

 aes(x = feature, y = cor, color = factor(p_v

alue))) +

 geom_segment(aes(x = feature, y = 0, xend = feature, yend = cor), color = "grey50")

+

 geom_point() +

 coord_flip() +

 scale_color_discrete(name = "p-value") +

 theme_bw()+

 theme(axis.text.y = element_text(size=6))

CORR_LINE_NEGATIVE_FEATURE_plot

features corr strong

features_cor <- cor_ALL_plot %>%

 mutate(feature = as.character(feature)) %>%

 arrange(desc(cor)) %>%

 pull(feature)

top_n <- head(features_cor,10)

bottom_n <- tail(features_cor,10)

features_strong_cor <- ALL_FEATURES %>%

 dplyr::select(top_n, bottom_n, cps_net, cps_rate, net_pop, net_id) %>%

 base::identity()

Now this line has to be modified to meet our needs

features_protective_all <- ALL_FEATURES %>%

 dplyr::select(contains("Banks"),

 contains("GrocerySuperMarket"),

Page 63 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 contains("HighSchoolsPublic"),

 contains("HotelMotel"),

 contains("ChildCareServices"),

 contains("ChildYouthServices"),

 contains("CivilSocialOrgs"),

 contains("Hospitals"),

 contains("NeighborhoodResourceCenters"),

 contains("PoliceFacilities"),

 contains("ReligiousOrgs"),

 NN_CPS_Accepted,

 cps_net, cps_rate, net_pop, net_id)

features_strong_protective_names <- cor_ALL_plot %>%

 filter(feature %in% names(features_protective_all)) %>%

 mutate(prefix = str_extract(feature, "^[^_]+(?=_)"),

 suffix = str_extract(feature, "(?<=_)[^_].*"),

 feature = as.character(feature)) %>%

 group_by(suffix) %>%

 slice(which.max(abs(cor)))

features_protective_strong <- features_protective_all %>%

 dplyr::select(features_strong_protective_names$feature,

 NN_CPS_Accepted,

 cps_net, cps_rate, net_pop, net_id) %>%

 base::identity()

risk features all

features_risk_all <- ALL_FEATURES %>%

 dplyr::select(contains("CRIME_THEFT.OF.PROPERTY.FELONY"),

 contains("CRIME_BURGLARY...RESIDENTIAL"),

 contains("CRIME_TERRORISTIC.ACT"),

 contains("NN_CRIME_THEFT.OF.PROPERTY.MISD"),

 contains("NN_CRIME_RAPE"),

 contains("NN_CRIME_BATTERY.2ND.DEGREE"),

 contains("NN_CRIME_DOMESTIC.BATTERING.2ND.DEGREE"),

Page 64 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 contains("NN_CRIME_BREAKING.OR.ENTERING.VEHICLE"),

 contains("NN_CRIME_AGGRAVATED.ROBBERY..INDIVIDUAL."),

 contains("NN_CRIME_ROBBERY..INDIVIDUAL."),

 contains("NN_CRIME_AGGRAVATED.ASSAULT.ON.AN.FAMILY.OR.HOUSEHOLD.MEMBER

"),

 contains("NN_CRIME_BURGLARY.COMMERCIAL"),

 contains("NN_CRIME_BATTERY.1ST.DEGREE"),

 contains("BarberAndBeautyShops"),

 contains("BusStops"),

 contains("CheckCashingAndPawn"),

 contains("FastFoodAndBeverage"),

 contains("GasStationAndConvMart"),

 contains("HotelMotel"),

 contains("LiquorStores"),

 contains("MajorDeptRetailDiscount"),

 contains("MixedDrink_BarRestClub"),

 contains("Rental_MobileHomes"),

 contains("Rental_SingleToQuad"),

 contains("Rentals_Apts_LessThan100units"),

 contains("Rentals_Apts_Over100units"),

 contains("TattooPiercing"),

 contains("Unsafe_Vacant_BldgsNEW"),

 NN_CPS_Accepted,

 cps_net, cps_rate, net_pop, net_id)

features_risk_strong

features_risk_strong_names <- cor_ALL_plot %>%

 filter(feature %in% names(features_risk_all)) %>%

 mutate(prefix = str_extract(feature, "^[^_]+(?=_)"),

 suffix = str_extract(feature, "(?<=_)[^_].*"),

 feature = as.character(feature)) %>%

 group_by(suffix) %>%

 slice(which.max(abs(cor)))

features_risk_strong <- features_risk_all %>%

 dplyr::select(features_risk_strong_names$feature,

Page 65 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 NN_CPS_Accepted,

 cps_net, cps_rate, net_pop, net_id) %>%

 base::identity()

features_census_select

features_census_select <- ALL_FEATURES %>%

 dplyr::select(SF1_Perc_Under18,

 SF1_Perc_Black,

 SF1_Perc_NonWh,

 SF1_Perc_Hispa,

 SF1_Perc_NonMarr_Fam_HH,

 SF1_Perc_FHH,

 SF1_Perc_SingPrnt_HH,

 SF1_PercLowEdu,

 SF1_Perc_RenterOcc,

 SF1_Perc_PopUnder18inPov,

 SF1_Perc_PopStrugg,

 SF1_Perc_NotInsured,

 SF1_Perc_PublicInsure,

 SF1_PercHighHH,

 SF1_PercCollEd,

 SF1_Perc_OwnHo,

 cps_net, cps_rate, net_pop, net_id)

features_risk_strong_plot <- features_risk_strong %>%

 dplyr::select(-net_id)

CORR_RISK_FEATURES_plot <- feature_corrplot(features_risk_strong_plot, "Correlation of

Risk Features")

features_protective_strong_plot <- features_protective_strong %>%

 dplyr::select(-net_id)

CORR_PROTECTIVE_FEATURES_plot <- feature_corrplot(features_protective_strong_plot, "Co

rrelation of Protective Features")

Line 1096 is Corr-protective-features-plot

Page 66 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

Line 1560 is feature prep

We can safely ignore bunch of plots in between these two chunks

feature prep

target_var <- "cps_net"

features_protective_strong2 <- dplyr::select(features_protective_strong, -cps_rate, -n

et_pop)

features_risk_strong2 <- dplyr::select(features_risk_strong, -cps_rate, -net_pop)

features_census_select2 <- dplyr::select(features_census_select, -cps_rate, -net_p

op)

model data prep

full_join(features_risk_strong, features_census_select, by = "net_id") %>%

 full_join(., features_protective_strong, by = "net_id") %>% names()

og_dat <- full_join(features_risk_strong, features_census_select, by = "net_id") %>%

 full_join(., features_protective_strong, by = "net_id") %>%

 dplyr::select(-net_pop.y, -cps_net.y, -cps_rate.y,

 -net_pop.x, -cps_net.x, -cps_rate.x)

dat <- og_dat %>% dplyr::select(-cps_rate, -net_pop, -net_id) %>%

 mutate_at(vars(-cps_net), scale_this) %>%

 identity() # line ender (does nothing)

net_hood <- st_join(net_littlerock, lr_tract, largest = TRUE)

all.equal(net_hoodnet_id, og_datnet_id)

og_dat$.block_id <- net_hood$NAME

tract fixed effects

hood_matrix <- model.matrix(cps_net~.block_id,og_dat)

hood_model <- lm(sqrt(og_dat$cps_net) ~ hood_matrix)

dat$hood_fixed <- predict(hood_model, type = "response")^2

og_dat$hood_fixed <- predict(hood_model, type = "response")^2

Page 67 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

create cv fold_tibble

n_folds = 5

target_var <- "cps_net"

all_hoods <- length(unique(net_hood$name))

n_folds = ifelse(n_folds == "LOOCV", all_hoods, n_folds)

folds_index <- groupdata2::fold(og_dat, k = n_folds, id_col = '.block_id')$.folds

cv_tbl <- tibble(folds = seq_len(n_folds),

 train = NA, train_y = NA, train_index = NA, train_net_id = NA,

 test = NA, test_y = NA, test_index = NA, test_net_id = NA)

for(k in seq_len(n_folds)){

 fold_i <- which(folds_index == k)

 cv_tbl[k,]$train <- list(dat[-fold_i,])

 cv_tbl[k,]$test <- list(dat[fold_i,])

 cv_tbl[k,]$train_y <- list(og_dat[-fold_i,target_var])

 cv_tbl[k,]$test_y <- list(og_dat[fold_i,target_var])

 cv_tbl[k,]$train_index <- list(setdiff(seq(1:nrow(dat)),fold_i))

 cv_tbl[k,]$test_index <- list(fold_i)

 cv_tbl[k,]$train_net_id <- list(og_dat[-fold_i,"net_id"])

 cv_tbl[k,]$test_net_id <- list(og_dat[fold_i,"net_id"])

}

cv_sf <- left_join(og_dat, net_littlerock, by = "net_id") %>%

 st_as_sf() %>%

 dplyr::select(.block_id)

NEIGHBORHOOD_FOLDS_plot <- plot(cv_sf)

Poisson regression

po_cv_tbl <- cv_tbl %>%

 mutate(fit = map(train, glm_fit,

Page 68 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 formula = paste("cps_net ~ ."),

 family = "poisson"),

 pred = map2(fit, test, lm_predict, sqrt = FALSE),

 mdl_nam = "GLM - Poisson") %>%

 score_model()

cat("Test Set MAE:",mean(po_cv_tbl$MAE),"\n")

cat("Test Set logdev:",mean(po_cv_tbl$logdev, na.rm=TRUE),"\n")

Poisson Regression fit plot

POISSON_REGRESSION_FIT_plot <- plot_fold_pred(po_cv_tbl$pred, po_cv_tbl$test_y, type =

"fit")

POISSON_REGRESSION_FIT_plot

Random Forest

rf_cv_tbl <- cv_tbl %>%

 mutate(fit = map(train, rf_fit, formula = "cps_net ~ .", mtry_add = 2, importance

= "impurity"),

 pred = map2(fit, test, lm_predict),

 mdl_nam = "Random Forest") %>%

 score_model()

cat("Test Set MAE:",mean(rf_cv_tbl$MAE),"\n")

cat("Test Set logdev:",mean(rf_cv_tbl$logdev, na.rm=TRUE),"\n")

Random Forest Var Imp Plot

varimp_dat <- data.frame(importance = rf_cv_tbl$fit[[1]]$variable.importance) %>%

 rownames_to_column("variable")

RF_VARIMP_PLOT <- ggplot(varimp_dat, aes(x=reorder(variable,importance), y=importance,

fill=importance))+

 geom_bar(stat="identity", position="dodge")+ coord_flip()+

 labs(y = "Variable Importance",

 x = " ",

 title = "Feature importance",

Page 69 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 subtitle = "Random Forest sub-model",

 caption = "Figure 6.4") +

 guides(fill=F)+

 scale_fill_viridis_c() +

 plotTheme()+

 theme(axis.text.y = element_text(size = 6))

RF_VARIMP_PLOT

ggsave(file = "RF-Var-Imp-Plot.png",RF_VARIMP_PLOT, height = 9, width = 7)

RANDOM_FOREST_FIT_plot <- plot_fold_pred(rf_cv_tbl$pred, rf_cv_tbl$test_y, type = "fit

")

RANDOM_FOREST_FIT_plot

Spatial Error Regression

spat_durbin <- errorsarlm(sqrt(cps_net) ~ ., data = dat, listw, etype ="emixed")

spat_durbin_tbl <- tibble(

 fit = list(spat_durbin),

 pred = map(fit, sar_pred),

 test_y= list(dat$cps_net),

 test_net_id = list(og_dat$net_id),

 mdl_nam = "Spatial Durbin - sqrt") %>%

 score_model()

cat("Test Set MAE:",mean(spat_durbin_tbl$MAE),"\n")

cat("Test Set logdev:",mean(spat_durbin_tbl$logdev, na.rm=TRUE),"\n")

SPATIAL_ERROR_FIT_plot <- plot_fold_pred(spat_durbin_tbl$pred, dat$cps_net, type = "fi

t")

POISSON_REGRESSION_FIT_plot+RANDOM_FOREST_FIT_plot+SPATIAL_ERROR_FIT_plot

Gather oof prediction

Page 70 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

po_pred_dat <- po_cv_tbl %>%

 unnest(pred) %>%

 mutate(test_y = po_cv_tbl %>% unnest(test_y) %>% pull(test_y),

 test_net_id = po_cv_tbl %>% unnest(test_net_id) %>% pull(test_net_id))

po_pred_geoplot <- model_pred_geoplot(po_pred_dat$pred,

 po_pred_dat$test_y,

 po_pred_dat$test_net_id,

 net_littlerock, cps_base_map, "po")

rf_pred_dat <- rf_cv_tbl %>%

 unnest(pred) %>%

 mutate(test_y = rf_cv_tbl %>% unnest(test_y) %>% pull(test_y),

 test_net_id = rf_cv_tbl %>% unnest(test_net_id) %>% pull(test_net_id))

rf_pred_geoplot <- model_pred_geoplot(rf_pred_dat$pred,

 rf_pred_dat$test_y,

 rf_pred_dat$test_net_id,

 net_littlerock, cps_base_map,

 "Rand

 om Forest")

One special

if(T){

 pred_dat <- data.frame(pred = rf_pred_dat$pred,

 obs = rf_pred_dat$test_y,

 net_id = rf_pred_dat$test_net_id)

 MAE_geoplot <- net_littlerock %>%

 left_join(., pred_dat, by = "net_id") %>%

 mutate(MAE = round(abs(pred - obs),2),

 feature_name = paste0("RF"," ", "MAE")) %>%

 make_cuts(., "MAE")

 MAE_geoplot %>% ggplot(aes(fill = MAE)) +

 geom_sf(color = NA) +

 scale_fill_viridis_d() +

 labs(title = "MAE")

Page 71 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

}

sarlm_pred_dat <- spat_durbin_tbl %>%

 unnest(pred) %>%

 mutate(test_y = spat_durbin_tbl %>% unnest(test_y) %>% pull(test_y),

 test_net_id = spat_durbin_tbl %>% unnest(test_net_id) %>% pull(test_net_id))

sarlm_pred_geoplot <- model_pred_geoplot(sarlm_pred_dat$pred,

 sarlm_pred_dat$test_y,

 sarlm_pred_dat$test_net_id,

 net_littlerock, cps_base_map,

 "SARLM")

cps_preds <- og_dat %>%

 dplyr::select(net_id, cps_net) %>%

 left_join(., dplyr::select(po_pred_dat,

 net_id = test_net_id,

 pred_lm = pred), by = "net_id") %>%

 left_join(., dplyr::select(rf_pred_dat,

 net_id = test_net_id,

 pred_rf = pred), by = "net_id") %>%

 left_join(., dplyr::select(sarlm_pred_dat,

 net_id = test_net_id,

 pred_sarlm = pred), by = "net_id") %>%

 mutate_if(is.double, round, 2)

Meta model stacking

if(all.equal(cps_predsnet_id, net_hoodnet_id)){

 cat("Predictions and spatial data are in same order, GOOD to go!", "\n")

} else {

 cat("There is a PROBLEM with order of predictions and spatial data; Likely Errors!",

"\n")

Page 72 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

}

cps_preds_cv_dat <- dplyr::select(cps_preds, -net_id)

ens_cv_tbl <- tibble(folds = seq_len(n_folds),

 train = NA, train_y = NA, train_index = NA, train_net_id = NA,

 test = NA, test_y = NA, test_index = NA, test_net_id = NA)

for(k in seq_len(n_folds)){

 fold_i <- which(folds_index == k)

 ens_cv_tbl[k,]$train <- list(cps_preds_cv_dat[-fold_i,])

 ens_cv_tbl[k,]$test <- list(cps_preds_cv_dat[fold_i,])

 ens_cv_tbl[k,]$train_y <- list(cps_preds_cv_dat[-fold_i,target_var])

 ens_cv_tbl[k,]$test_y <- list(cps_preds_cv_dat[fold_i,target_var])

 ens_cv_tbl[k,]$train_index <- list(setdiff(seq(1:nrow(cps_preds_cv_dat)),fold_i))

 ens_cv_tbl[k,]$test_index <- list(fold_i)

 ens_cv_tbl[k,]$train_net_id <- list(cps_preds[-fold_i,"net_id"])

 ens_cv_tbl[k,]$test_net_id <- list(cps_preds[fold_i,"net_id"])

}

ens_cv_tbl <- ens_cv_tbl %>%

 mutate(fit = map(train, rf_fit, formula = "cps_net ~ pred_rf + pred_sarlm"),

 pred = map2(fit, test, lm_predict),

 # pred = map(pred, round),

 mdl_nam = "Meta-Model") %>%

 score_model()

cat("Test Set MAE:",mean(ens_cv_tbl$MAE),"\n")

cat("Test Set logdev:",mean(ens_cv_tbl$logdev),"\n")

Meta model fit plot

META_MODEL_FIT_plot <- plot_fold_pred(ens_cv_tbl$pred, ens_cv_tbl$test_y, type = "fit"

) +

 labs(x = "Observed Maltreatment Counts",

 y = "Predicted Maltreatment Counts",

 title = "Predicted vs. observed maltreatment counts",

 caption = "Figure 1.7") +

 plotTheme() +

Page 73 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 theme(panel.border = element_blank())

join meta moodel predictions

ens_pred_dat <- ens_cv_tbl %>%

 unnest(pred) %>%

 mutate(test_y = ens_cv_tbl %>% unnest(test_y) %>% pull(test_y),

 test_net_id = ens_cv_tbl %>% unnest(test_net_id) %>% pull(test_net_id))

ens_pred_geoplot <- model_pred_geoplot(ens_pred_dat$pred,

 ens_pred_dat$test_y,

 ens_pred_dat$test_net_id,

 net_littlerock, cps_base_map,

 "Meta-Model")

cps_preds2 <- cps_preds %>%

 left_join(., dplyr::select(ens_pred_dat,

 net_id = test_net_id,

 pred_ens = pred) %>%

 mutate(pred_ens = round(pred_ens,2)), by = "net_id")

PREDICTION_MAP_plots

POISSON_MODEL_PREDICTION_MAP_plot <- cowplot::plot_grid(po_pred_geoplot[[2]] +

 labs(title = "Poisson Regres

sion",

 subtitle = "Predicted M

altreatment Count"),

 po_pred_geoplot[[1]] +

 labs(subtitle = "MAE") +

 scale_fill_viridis_d(name =

"MAE"),

 align = "h")

POISSON_MODEL_PREDICTION_MAP_plot

RF_MODEL_PREDICTION_MAP_plot <- cowplot::plot_grid(rf_pred_geoplot[[2]] +

 labs(title = "Random Forest",

Page 74 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 subtitle = "Predicted Maltre

atment Count"),

 rf_pred_geoplot[[1]] +

 labs(subtitle = "MAE") +

 scale_fill_viridis_d(name = "MAE"

),

 align = "h")

RF_MODEL_PREDICTION_MAP_plot

SARLM_MODEL_PREDICTION_MAP_plot <- cowplot::plot_grid(sarlm_pred_geoplot[[2]] +

 labs(title = "Spatial Durbin M

odel",

 subtitle = "Predicted Mal

treatment Count") +

 mapTheme() +

 theme(panel.border = element_b

lank()),

 sarlm_pred_geoplot[[1]] +

 labs(subtitle = "MAE") +

 scale_fill_viridis_d(name = "M

AE") +

 mapTheme() +

 theme(panel.border = element_b

lank()),

 align = "h")

META_MODEL_PREDICTION_MAP_plot <- cowplot::plot_grid(ens_pred_geoplot[[2]] +

 labs(title = "Meta-Model",

 subtitle = "Predicted Malt

reatment Count",

 caption = "Figure 6.2") +

 mapTheme() +

 theme(panel.border = element_bl

ank()),

 ens_pred_geoplot[[1]] +

 labs(subtitle = "MAE") +

 scale_fill_viridis_d(name = "MA

E") +

 mapTheme() +

Page 75 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 theme(panel.border = element_bl

ank()),

 align = "h")

r model_error_by_decile

models <- bind_rows(rf_cv_tbl, spat_durbin_tbl, ens_cv_tbl, po_cv_tbl)

CV_preds_long <- models %>%

 group_by(mdl_nam) %>%

 unnest(pred, test_y)

map over all quantiles to get error metrics

quantile_errors <- CV_preds_long %>%

 nest(-mdl_nam) %>%

 mutate(q = list(seq(0,1,0.01)),

 pred = map(data, "pred"),

 test_y = map(data, "test_y")) %>%

 dplyr::select(-data) %>%

 unnest(q, .preserve = c(pred, test_y)) %>%

 filter(q != 0) %>%

 mutate(q_dat = pmap(list(pred, test_y, q), quantile_error),

 q_pred = map(q_dat, "pred"),

 q_obs = map(q_dat, "obs"),

 q_RMSE = map2_dbl(q_pred, q_obs, rmse),

 q_MAE = map2_dbl(q_pred, q_obs, mae),

 q_logdev = map2_dbl(q_pred, q_obs, logdev_p),

 y_max = quantile(seq(0,max(dat$cps_net)), q),

 q_cnt = nrow(og_dat) - map_int(q_dat, nrow))

q_error_plotdat <- quantile_errors %>%

 dplyr::select(mdl_nam, q, q_RMSE, q_MAE, q_logdev)

q_cnt_plotdat <- quantile_errors %>%

 dplyr::select(mdl_nam, q, y_max, q_cnt) %>%

 filter(q != 0) %>%

 mutate(q_pcnt = (q_cnt / nrow(og_dat)))

q_error_mean <- q_error_plotdat %>%

 group_by(mdl_nam) %>%

Page 76 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 summarise(mean_RMSE = mean(q_RMSE, na.rm = TRUE),

 mean_MAE = mean(q_MAE, na.rm = TRUE),

 mean_logdev = mean(q_logdev, na.rm = TRUE)) %>%

 arrange(desc(mean_logdev))

print(q_error_mean)

Appendix 4e - Model Error Table

Helper function for quantile error

quantile_error <- function(pred,obs,quant){

 preds <- data.frame(pred = pred, obs = obs) %>%

 filter(quantile(seq(0,max(obs)), quant)>obs)

 return(preds)

}

Join/bind model prediction tables

models <- bind_rows(rf_cv_tbl, spat_durbin_tbl, ens_cv_tbl, po_cv_tbl)

Unnest predictions by model

CV_preds_long <- models %>%

 group_by(mdl_nam) %>%

 unnest(pred, test_y)

Map over all quantiles to get error metrics

quantile_errors <- CV_preds_long %>%

 nest(-mdl_nam) %>%

 mutate(q = list(seq(0,1,0.01)),

 pred = map(data, "pred"),

 test_y = map(data, "test_y")) %>%

 dplyr::select(-data) %>%

 unnest(q, .preserve = c(pred, test_y)) %>%

 filter(q != 0) %>%

 mutate(q_dat = pmap(list(pred, test_y, q), quantile_error),

 q_pred = map(q_dat, "pred"),

 q_obs = map(q_dat, "obs"),

 q_RMSE = map2_dbl(q_pred, q_obs, rmse),

 q_MAE = map2_dbl(q_pred, q_obs, mae),

 q_logdev = map2_dbl(q_pred, q_obs, logdev_p),

Page 77 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 y_max = quantile(seq(0,max(dat$cps_net)), q),

 q_cnt = nrow(og_dat) - map_int(q_dat, nrow))

Map over all predictions grouped by model to calculate mean and sd for error metrics

model_results <- models %>%

 dplyr::select("Model Name" = mdl_nam, R2, RMSE, MAE, logdev) %>%

 group_by(`Model Name`) %>%

 arrange(`Model Name`) %>%

 summarise(R2_mean = mean(R2, na.rm=TRUE),

 R2_sd = sd(R2, na.rm=TRUE),

 MAE_mean = mean(MAE, na.rm=TRUE),

 MAE_sd = sd(MAE, na.rm=TRUE),

 RMSE_mean = mean(RMSE, na.rm=TRUE),

 RMSE_sd = sd(RMSE, na.rm=TRUE),

 logdev_mean = mean(logdev, na.rm=TRUE),

 logdev_sd = sd(logdev, na.rm=TRUE))

Model_Error_Results_table <- model_results %>%

 kable(., format = "html", digits = 3) %>%

 kable_styling()

meta_log_mean <- model_results[which(model_results$`Model Name` == "Meta-Model"),"logd

ev_mean",drop=TRUE]

meta_log_sd <- model_results[which(model_results$`Model Name` == "Meta-Model"),"logdev

_sd",drop=TRUE]

meta_log_error <- qnorm(0.975)*meta_log_sd/sqrt(nrow(ens_cv_tbl))

meta_log_error_lower <- round(meta_log_mean - meta_log_error,3)

meta_log_error_upper <- round(meta_log_mean + meta_log_error,3)

meta_MAE_mean <- model_results[which(model_results$`Model Name` == "Meta-Model"),"MAE_

mean",drop=TRUE]

meta_MAE_sd <- model_results[which(model_results$`Model Name` == "Meta-Model"),"MAE_sd

",drop=TRUE]

meta_MAE_error <- qnorm(0.975)*meta_MAE_sd/sqrt(nrow(ens_cv_tbl))

meta_MAE_error_lower <- round(meta_MAE_mean - meta_MAE_error,3)

meta_MAE_error_upper <- round(meta_MAE_mean + meta_MAE_error,3)

chunk aggregate_model_errors_to_neighborhood

Page 78 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

error_geoplot <- net_littlerock %>%

 left_join(., ens_pred_dat, by = c("net_id" = "test_net_id"),

 feature_name = paste0("Meta-Model", "dev")) %>%

 score_model() %>%

 mutate(dev_p_inv = 1 - logdev) %>%

 make_cuts(., "logdev", cuts = "breaks", n_breaks = 5)

error metrics to points

error_points <- st_centroid(error_geoplot) %>%

 dplyr::select(logdev, MAE, test_y) ##add net_id

aggreate mean errors to neighborhoods

neighborhood_metric_logdev <- error_points %>%

 aggregate(., lr_tract, mean) %>%

 dplyr::select(logdev) %>%

 make_cuts(., "logdev") ## lr_tract replaces nbr

neighborhood_metric_MAE<- error_points %>%

 aggregate(., lr_tract, mean) %>%

 dplyr::select(MAE) %>%

 mutate(MAE = round(MAE,2)) %>%

 make_cuts(., "MAE")

model error by decile

models <- bind_rows(rf_cv_tbl, spat_durbin_tbl, ens_cv_tbl, po_cv_tbl)

CV_preds_long <- models %>%

 group_by(mdl_nam) %>%

 unnest(pred, test_y)

map over all quantiles to get error metrics

quantile_errors <- CV_preds_long %>%

 nest(-mdl_nam) %>%

 mutate(q = list(seq(0,1,0.01)),

 pred = map(data, "pred"),

Page 79 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 test_y = map(data, "test_y")) %>%

 dplyr::select(-data) %>%

 unnest(q, .preserve = c(pred, test_y)) %>%

 filter(q != 0) %>%

 mutate(q_dat = pmap(list(pred, test_y, q), quantile_error),

 q_pred = map(q_dat, "pred"),

 q_obs = map(q_dat, "obs"),

 q_RMSE = map2_dbl(q_pred, q_obs, rmse),

 q_MAE = map2_dbl(q_pred, q_obs, mae),

 q_logdev = map2_dbl(q_pred, q_obs, logdev_p),

 y_max = quantile(seq(0,max(dat$cps_net)), q),

 q_cnt = nrow(og_dat) - map_int(q_dat, nrow))

q_error_plotdat <- quantile_errors %>%

 dplyr::select(mdl_nam, q, q_RMSE, q_MAE, q_logdev)

q_cnt_plotdat <- quantile_errors %>%

 dplyr::select(mdl_nam, q, y_max, q_cnt) %>%

 filter(q != 0) %>%

 mutate(q_pcnt = (q_cnt / nrow(og_dat)))

q_error_mean <- q_error_plotdat %>%

 group_by(mdl_nam) %>%

 summarise(mean_RMSE = mean(q_RMSE, na.rm = TRUE),

 mean_MAE = mean(q_MAE, na.rm = TRUE),

 mean_logdev = mean(q_logdev, na.rm = TRUE)) %>%

 arrange(desc(mean_logdev))

print(q_error_mean)

Error decile plots

LOGDEV_MODEL_ERROR_BY_DECILE_plot <- ggplot(data = q_error_plotdat, aes(x=q, y=q_logde

v, group = mdl_nam, color = factor(mdl_nam))) +

 geom_line(size = 1) +

 scale_color_viridis_d(name = "Model") +

 scale_y_continuous(limits=c(0,1)) +

 labs(y = "Logarithmic Score",

 caption = "Figure 6.2 - Goodness of fit by decile") +

 plotTheme() +

Page 80 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 theme(legend.position = "right")

MAE_MODEL_ERROR_BY_DECILE_plot <- ggplot(data = q_error_plotdat, aes(x=q, y=q_MAE, gro

up = mdl_nam, color = factor(mdl_nam))) +

 geom_line(size = 1) +

 scale_color_viridis_d(name = "Model") +

 labs(y = "MAE") +

 plotTheme() +

 theme(legend.position = "right")

COUNT_BY_DECILE_plot <- ggplot(data = q_cnt_plotdat,

 aes(x=q, y=q_cnt, group = mdl_nam, color = factor(mdl_n

am))) +

 geom_line(size = 1) +

 scale_x_continuous(breaks=seq(0,1,0.1), labels = seq(0,1,0.1)) +

 scale_color_viridis_d(name = "Model") +

 labs(y = "Number of Predictions in Each Decile",

 x = "Decile") +

 plotTheme() +

 theme(legend.position = "right")

legend <- get_legend(LOGDEV_MODEL_ERROR_BY_DECILE_plot + plotTheme() + theme(legend.po

sition = "right"))

Model_Error_Results_table

model_results <- models %>%

 dplyr::select("Model Name" = mdl_nam, R2, RMSE, MAE, logdev) %>%

 group_by(`Model Name`) %>%

 arrange(`Model Name`) %>%

 summarise(R2_mean = mean(R2, na.rm=TRUE),

 R2_sd = sd(R2, na.rm=TRUE),

 MAE_mean = mean(MAE, na.rm=TRUE),

 MAE_sd = sd(MAE, na.rm=TRUE),

 RMSE_mean = mean(RMSE, na.rm=TRUE),

 RMSE_sd = sd(RMSE, na.rm=TRUE),

 logdev_mean = mean(logdev, na.rm=TRUE),

Page 81 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 logdev_sd = sd(logdev, na.rm=TRUE))

Model_Error_Results_table <- model_results %>%

 kable(., format = "html", digits = 3) %>%

 kable_styling()

meta_log_mean <- model_results[which(model_results$`Model Name` == "Meta-Model"),"logd

ev_mean",drop=TRUE]

meta_log_sd <- model_results[which(model_results$`Model Name` == "Meta-Model"),"logdev

_sd",drop=TRUE]

meta_log_error <- qnorm(0.975)*meta_log_sd/sqrt(nrow(ens_cv_tbl))

meta_log_error_lower <- round(meta_log_mean - meta_log_error,3)

meta_log_error_upper <- round(meta_log_mean + meta_log_error,3)

meta_MAE_mean <- model_results[which(model_results$`Model Name` == "Meta-Model"),"MAE_

mean",drop=TRUE]

meta_MAE_sd <- model_results[which(model_results$`Model Name` == "Meta-Model"),"MAE_sd

",drop=TRUE]

meta_MAE_error <- qnorm(0.975)*meta_MAE_sd/sqrt(nrow(ens_cv_tbl))

meta_MAE_error_lower <- round(meta_MAE_mean - meta_MAE_error,3)

meta_MAE_error_upper <- round(meta_MAE_mean + meta_MAE_error,3)

Line 1944 : change nbr to lr_tract

Chunk aggregate_model_errors_to_neighborhood

error_geoplot <- net_littlerock %>%

 left_join(., ens_pred_dat, by = c("net_id" = "test_net_id"),

 feature_name = paste0("Meta-Model", "dev")) %>%

 score_model() %>%

 mutate(dev_p_inv = 1 - logdev) %>%

 make_cuts(., "logdev", cuts = "breaks", n_breaks = 5)

error metrics to points

error_points <- st_centroid(error_geoplot) %>%

 dplyr::select(logdev, MAE, test_y)

aggreate mean errors to neighborhoods

neighborhood_metric_logdev <- error_points %>%

 aggregate(., lr_tract, mean) %>%

Page 82 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 dplyr::select(logdev) %>%

 make_cuts(., "logdev")

neighborhood_metric_MAE<- error_points %>%

 aggregate(., lr_tract, mean) %>%

 dplyr::select(MAE) %>%

 mutate(MAE = round(MAE,2)) %>%

 make_cuts(., "MAE")

##MODEL_ERROR_BY_NEIGHBORHOOD_plots

LOGDEV_BY_NEIGHBORHOOD_plot <- make_fishnet_dist_plot(neighborhood_metric_logdev, cps_

base_map, legend = "right",

 direction = 1, var_name = "Devia

nce",

 title = "Out-of-Fold error by Ce

nsus Tract") +

 labs(caption = "Figure 6.3",

 subtitle = "Logarithmic score") +

 mapTheme()

MAE_BY_NEIGHBORHOOD_plot <- make_fishnet_dist_plot(neighborhood_metric_MAE, cps_base_m

ap, legend = "right",

 direction = 1, var_name = "MAE") +

 labs(subtitle = "MAE") +

 mapTheme()

MAE_BY_NEIGHBORHOOD_plot

plot_fold_pred(ens_cv_tbl$pred, ens_cv_tbl$test_y, type = "fit") +

 labs(x = "Observed Maltreatment Counts",

 y = "Predicted Maltreatment Counts",

 title = "Predicted vs. observed maltreatment counts",

 caption = "Figure 6.1") +

 plotTheme() +

 theme(panel.border = element_blank())

plot_fold_pred(ens_cv_tbl$pred, ens_cv_tbl$test_y, type = "fit") +

Page 83 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 labs(x = "Observed Maltreatment Counts",

 y = "Predicted Maltreatment Counts",

 title = "Predicted vs. observed maltreatment counts",

 caption = "Figure 6.1") +

 plotTheme() +

 theme(panel.border = element_blank())

Below we calculate poverty and nonWhite rates by neighborhood by converting tracts

to centroids and spatial joining with

#neighborhoods statistical areas.

lr_tract_statAreas <- lr_tract %>% mutate(stat_area_id = GEOID)

tract10 <- var_list[["LR_BG_Tracts_ACS_DataJoined"]]

tract10 <- tract10 %>% dplyr::select(TotPopSize, Perc_NonWh, Perc_PopSt,

 Perc_NotIn, Perc_PopUn,geometry)

tract10 <- tract10 %>% dplyr::rename(Perc_PopUnder18inPov = Perc_PopUn,

 Perc_PopStrugg = Perc_PopSt,

 Perc_NotInsured = Perc_NotIn,

 TotalPop = TotPopSize) %>%

 dplyr::mutate(tract_id = dplyr::row_number(),

 NumberWhites = ifelse(TotalPop > 0, (TotalPop*(1-Perc_NonWh)

),0),

 TotalPoverty = TotalPop*Perc_PopStrugg)

tract10$tract_area <- st_area(tract10)

Line 2015 ## chunk: census_statistical_area_spatial_intersection

#do the spatial join, create poverty and non whites rates by district. Create a dummy

for rates >= stat_area_quantile percentile

create intersection of tract10 and statareas

lr_tract_statAreas.intersect <- st_intersection(tract10, lr_tract_statAreas)

get % tract in statares and mulitply by pop totals from each tract

result is the total tract pops distributed to the statarea by % of tract in statare

lr_tract_statAreas.spJoin <- lr_tract_statAreas.intersect %>%

 mutate(intersect_area = st_area(lr_tract_statAreas.intersect)) %>%

 # get % of tract and multiply totals by percent area of tract in statarea

Page 84 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

 group_by(tract_id) %>%

 mutate(intersect_pcnt_of_tract = as.numeric(intersect_area) / as.numeric(tract_area)

,

 intersect_TotalPop = round(TotalPop * intersect_pcnt_of_tract, 1),

 intersect_NumberWhites = round(NumberWhites * intersect_pcnt_of_tract, 1),

 intersect_TotalPoverty = round(TotalPoverty * intersect_pcnt_of_tract, 1)) %>

%

 ungroup() %>%

 # sum the fraction of pop totals up to statarea

 group_by(stat_area_id) %>%

 summarise(statarea_TotalPop = sum(intersect_TotalPop),

 statarea_NumberWhites = sum(intersect_NumberWhites),

 statarea_TotalPoverty = sum(intersect_TotalPoverty)) %>%

 # make quantites of interest

 mutate(percentNonWhite = ifelse(statarea_TotalPop > 0,

 ((statarea_TotalPop - statarea_NumberWhites) / stata

rea_TotalPop),0),

 percentPoverty = ifelse(statarea_TotalPop > 0,

 statarea_TotalPoverty / statarea_TotalPop, 0))

classify by quantile and make dummy variable

lr_tract_statAreas.spJoin <- lr_tract_statAreas.spJoin %>%

 mutate(poverty.percentile = ifelse(percentPoverty >=

 quantile(lr_tract_statAreas.spJoin$percentPover

ty,

 p = stat_area_quantile, na.rm=T),"1",0

),

 nonWhite.percentile = ifelse(percentNonWhite >=

 quantile(lr_tract_statAreas.spJoin$percentNonW

hite,

 p = stat_area_quantile, na.rm=T),1,0)

)

Page 85 of 85 Copyright © 2020 Predict Align Prevent, Inc. Some Rights Reserved.

References

1. Daley, Dyann, Michael Bachmann, Brittany A. Bachmann, Christian Pedigo, Minh-Thuy Bui, and

Jamye Coffman. "Risk terrain modeling predicts child maltreatment." Child abuse & neglect 62

(2016): 29-38.

2. Durlauf, Steven N. "Neighborhood effects." In Handbook of regional and urban economics, vol.

4, pp. 2173-2242. Elsevier, 2004.

3. Daley, Dyann, Michael Bachmann, Brittany A. Bachmann, Christian Pedigo, Minh-Thuy Bui, and

Jamye Coffman. "Risk terrain modeling predicts child maltreatment." Child abuse & neglect 62

(2016): 29-38.

4. Bivand, R. & Wong, D. W. S. (2018). Comparing implementations of global and local indicators of

spatial association. TEST 27, 716–748.

5. Bivand, R. S., Pebesma, E. J., Gomez-Rubio, V. & Pebesma, E. J. (2008). Applied spatial data

analysis with R, vol. 747248717. Springer.

6. Breiman, L. (2001). Random forests. Machine learning 45, 5–32.

7. Caplan, J. M., Kennedy, L. W., Barnum, J. D. & Piza, E. L. (2015). Risk terrain modeling for spatial

risk assessment. Cityscape 17, 7–16.

8. Caplan, J. M., Kennedy, L. W. & Miller, J. (2011). Risk terrain modeling: Brokering criminological

theory and gis methods for crime forecasting. Justice Quarterly 28, 360–381.

9. Drawve, G. (2016). A metric comparison of predictive hot spot techniques and RTM. Justice

Quarterly 33, 369–397.

10. Elhorst, J. (2014). Spatial econometrics: from cross-sectional data to spatial panels. Springer.

11. James, G., Witten, D., Hastie, T. & Tibshirani, R. (2014). An Introduction to Statistical Learning:

With Applications in R. Springer Publishing Company, Inc.

12. Montgomery, D. C., Peck, E. A. & Vining, G. G. (2006). Introduction to Linear Regression Analysis

(4th ed.). Wiley & Sons.

13. Pebesma, E. J. & Bivand, R. (2019). Spatial Data Science.

14. Breiman, L. (1996). Stacked regressions. Machine learning, 24(1), 49-64.

15. Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2), 241-259.

